薛定谔-生命是什么-第6部分
按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
皇呛芏嗟模墒敲恳淮蜗赴至讯贾沂档馗粗屏恕4送猓飧龌蚪峁顾脑邮亢芸赡芡琗射线试验测得的原子数目是同一个数量级。在所有时间里,基因保持华氏98度左右的温度。它能够不受热运动的无序趋向的干扰保持了几个世纪,这一点我们又如何理解呢?
上世纪末的一位物理学家,如果他只打算根据他所能解释的、他真正理解的那些自然界的定律去解释这个问题,他将是一筹莫展的。在对统计学的情况稍加考虑以后,他也许会作出回答(如我们将看到的是正确的回答):这些物质结构只能是分子。关于这些原子的集合体的存在,它有时是高度温定的,对此,当时的化学已有了广泛的了解。不过这种了解是纯粹经验的。对分子的性质还不了解——使分子保持一定形状的、原子间强有力的作用键,对每个人来说,完全是个谜。事实上,这个问答证明是正确的,可是,它只是把这种莫名其妙的生物学稳定性追溯到同样莫名其妙的化学稳定性,所以是无济于事的。根据同一个原理去证明两种特性在表明上是相似的,只要这个原理本身还是未知的那个证明就永远是靠不住的。
33。 可以用量子论来解释
在这种情况下,量子论弥补了不足之处。根据现在的了解,遗传的机制是同量子论的基础密切相关的,不,是建立在量子论的基础之上的。量子理论是马克斯?普朗克于1900年发现的。现代遗传学可以从德弗里斯、科伦斯和切尔玛克(1900年)重新发现孟德尔的论文,以及从德弗里斯关于突变的论文(1901—1903年)那时算起。因此,这两大理论几乎是同时诞生的,而且它们两者一定要在相当成熟后才会发生联系,这也是不足为奇的。在量子论方面,化了四分之一世纪多的时间,直到1926—1927年W。海特勒和F。伦敦才制定出化学键的量子论的一般原理。海特勒—伦敦理论包含了量子论最新进展的最精细而错综复杂的概念(叫做“量子力学”或“波动力学”)。不用微积分的描述几乎是不可能的,否则至少要写象本书一样的另一本小册子。不过,好在是全部工作现在都已完成了,并有助于澄清我们的思想,看来有可能以更直截了当的方式指出“量子跃迁”同突变之间的联系,立即搞清楚最主要的项目。我们在这里就是试图做到这一点。
34。 量子论——不连续状态——量子跃迁
量子论的最大启示是在“自然界的圣典”里发现了不连续性的特点,而当时的观点却认为自然界中除了连续性外全都是荒谬的。
第一个这样的例子涉及到的是能量。一个物体在很大范围内连续地改变着它的能量。例如一个摆,它的摆动由于空气的阻力逐渐缓慢下来。十分奇怪的是,它却证明了,必须承认在原子这一级上的系统的行为是不同的。根据我们不能在这里详细说明的那些理由,我们必须假定一个小的系统由于它自己的性质,只能具有某种不连续的能量,称为它的特殊的能级。从一种状态转变为另一种状态,是一种相当神秘的事情,通常称之为“量子跃迁”。
不过能量并不是一个系统的唯一的特征。再以我们的摆为例但是把它想象成能够作出各种运动的摆,如天花板上悬下一根绳子,挂上一个重球,它能够作南北向、东西向或任何其他方向上的摆动,或者作圆形或椭圆形的摆动。用一只风箱轻轻地吹这只球,便能是它从运动的一种状态连续地转变到任何另一种状态。
对于微观系统来说,这些特征或相似的特征——对此我们不能详细地讨论了——的大多数都是不连续地发生变化的。它们是“量子化”的,能量恰恰就是如此。
结果是许多个原子核,包括它们的电子卫兵,当发现它们自己(彼此)靠拢形成“一个系统”时,原子核是无法通过自己的性质来选择一种我们所能想象到的任何适宜的构型的。它们的性质使它们可以选择的只是大量的、但是不连续的“状态”系列。我们通常称它们为级或能级,因为能量是这种特征的十分重要的部分。但是必须懂得,对它的完整的描述,要包括能量以外的更多的东西。认为一种状态是意味着全部微粒的一种确定的构型,这种想法实际上是正确的。
一种构型转变为另一种构型就是量子跃迁。如果第二种构型具有更大的能量(“是较高的能级”),那么,外界至少要供给这个系统以两个能级间的能量差额,才能使转变成为可能。它也可以自发地变到较低的能级,通过辐射来消耗多余的能量。
35。 分子
在原子选定的一组不连续状态中间,不一定是、但可以是使核彼此紧密靠拢的最低能级。在这种状态中,原子组成了分子。这里有一点是要着重指出的,即分子必须具有一定的稳定性;除非外界供给它以“提高”到邻近的较高能级所需的能量差额,否则,构型是不会改变的。因此,这种数量十分确定的能级差是定量地决定了分子的稳定程度。我们将会观察到,这个事实同量子论的基础本身,也就是同能级图式的不连续性的联系是多么的密切。
我必须请读者姑且认为这些观点的体系已经被化学事实彻底地核实过了;而且它已经证明在解释化学原子价的基本事实和关于分子结构的许多细节,如它们的结合能,它们在不同温度下的稳定性等方面是成功的。我是无法详细地加以检验的。
36。 分子的稳定性有赖于温度
我们必须因考察了生物学问题中最有兴趣的一点,即不同温度下的分子稳定性而感到满足。假定我们的原子系统一开始确实是处在它的最低能级的状态。物理学家称之为绝对零度下的分子。要把它提高到相邻的较高的状态或能级,就需要供给一定的能量。最简单的供给能量的方式是给分子“加热”。把它带进一个高温环境(“热浴”),让别的系统(原子,分子)冲击它。考虑到热运动的完全不规则性,所以不存在一个可以肯定的、并立即引起“提高”的、截然分明的温度界限。更确切地说,在任何温度下(只要不是绝对零度),都有出现“提高”的机会,这种机会是有大有小的,而且当然是随着“热浴”的温度而增加的。表达这种机会的最好的方式是,指出在发生“提高”以前你必须等待的平均时间,即“期待时间”。
根据M。波拉尼和E。维格纳的研究,“期待时间”主要取决于二种能量之比,一种能量正好就是为了“提高”而需要的能量差额本身(我们用W来表示),另一种能量是描述在有关的温度下热运动强度的特性(我们用T表示绝对温度,kT表示特有的能量)。有理由认为,实现“提高”的机会愈小,期待时间便愈长,而“提高”本身同平均热能相比也就愈高,就是说,W:kT之比值的相当小的变化,会大大地影响期待时间。例如(按照德尔勃留克的例子),W是kT的三十倍,期待时间可能只短到1/10秒;但当W是kT的五十倍时,期待时间将延长到十六个月;而当W是kT的六十倍时,期待时间将延长到三万年!
对于那些对数学感兴趣的读者来说,可以用数学的语言来说明这种对于能级或温度变化高度敏感的理由,同时再加上一些类似的物理学的说明。其理由是,期待时间(称之为t)是通过指数函数的关系依赖于W/kT之比的;于是
t=cEXP(W/kT)
c是10的…13或…14次方秒这么小的数量级的常数。这个特定的指数函数并不是一种偶然的特性。它一再出现在热的统计学理论中,似乎构成了该理论的基本内容。它是在系统的某个部分中,偶然地聚集象W那么大的能量的不可能性的几率的一种度量。当需要有好几倍的“平均能量”kT时,增加得如此巨大的就是这种不可能性的几率。
实际上,W=30kT(见上面引用的例子)已经是极少有的了。当然,它之所以还没有导致很长的期待时间(在我们的例子中只有1/10秒),是由于c因子是很小的缘故。这个因子具有物理学的意义。它是整个时间内,在系统里发生的振动周期的数量级。你可以非常概括地描述这个因子,认为它是积聚起所需要的W总数的机会,它虽然很小,可是在“每一次振动”里是一再出现的,就是说,每秒大约有10的13或14次方次。
38。 第一个修正
提出这些理由作为分子稳定性理论时,就已经是默认了我们称之为“提高”的量子跃迁如果不是导致完全的分解,至少也是导致相同的原子构成了本质上不同的构型——一种同分异构分子,正如化学家说的,那是由相同的一些原子按不同的排列所组成的分子(应用到生物学上时,它就代表同一个“位点”上的不同的“等位基因”,量子跃迁则代表突变)。
对这个解释,必须作两点修正,为了使人们易于了解,我有意把它说得简单化些。根据我所讲的,可能会认为只有在极低的能量状态下,一群原子才会组成我们所说的分子,而下一个比较高的状态已经是“别的一些东西”了。并不是这样的。事实上,即使在最低能级的后面,还有着一系列密集的能级,这些能级并不涉及到整个构型的任何可以察觉的变化,而只是对应于原子中间的那些微小的振动,这种振动我们在第37节里已经讲了。它们也都是“量子化”的,不过是以较小的不子从一个能级跳到相邻的能级。因此,在低温下,“热浴”粒子的碰撞已足以造成振动。如果分子是一种伸展的结构,你可以把这些振动想象为穿过分子而不发生任何伤害的高频声波。
所以,第一个修正并不是十分重大的:我们可以不去理会能级图式的“振动的精细结构”。“相邻的较高能级”这个术语可以这样来理解,即与构型的改变相对应的相邻的能级。
39。 第二个修正
第二个修正解释起来更加困难,因为它关系到各种能级图式的某种重要而又复杂的特性。两个能级之间的自由通道也许被阻塞了,更谈不上供给所需要的能量了;事实上,甚至从比较高的状态到比较低的状态的通路也可能阻塞了。
让我们从经验事实谈起吧。化学家都知道,相同的原子团结合组成分子的方式不止一种。这种分子叫做同分异构体(“由同样的成分组成的”)。同分异构现象不是一种例外,而是一种规律。分子愈大,提供的同分异构体也就愈多。一种最简单的情况,即同样由三个碳原子八个氢原子和一个氧原子所组成的两种丙醇。氢和碳之间氧都能够插入,但只有两种情况才是不同的物质。它们确实也是如此。它们所有的物理常数和化学常数都是明显不同的。它们的能量也不同,代表了“不同的能级”。
值得注意的是两个分子都是完全稳定的,它们的行为就象它们都是处于“最低状态”。不存在从一种状态到另一种状态的自发转变。
理由是两种构型并不是相邻的构型。要从一种构型转变为另一种构型,只能通过介乎两者之间的中间构型才能发生,这种中间构型的能量比它们当中的任何一种构型都要高。粗浅地说,氧必须从一个位置抽出来,插到另一个位置上。如果不经过能量相当高的构型,看来是无法完成这种转变的。
现在可以提出我们的“第二修正”了,即这一类“同分异构体”的变化,是在生物学应用中我们唯一感到兴趣的一种变化。这些变化就是我们在第35节到37节中解释“稳定性”时所必须牢记的。我们所说的“量子跃迁”,就是从一种相对稳定的分子构型变到另一种构型。供给转变所需的能量(其数量用W表示)并不是真正的能级差,而是从初级能量上升到阈的步阶。
在初态和终态之间不介入阈能的转变是毫无意义的,这不仅在生物学应用上是如此。这种转变对分子的化学稳定性确实是毫无作用的,为什么呢?因为它们没有持久的效应,它们是不引人注意的。由于没有什么东西阻止它们的回路,所以当它们发生转变时,几乎就立刻回复到初态了。
Home | News | Magazine | Library | Encyclopedia | Review | Essay | Forum 2002年4月26日 星期六
您 所在的位置:三思→三思藏书架→生命是什么?
第五章 对德尔勃留克模型的讨论和检验
确实的,正如光明显出了它自身,也显出了黑暗一样,于是,真理是它自身的标准,也是谬误的标准。
——斯宾诺莎《伦理学》第二部分,命题43
40。 遗传物质的一般图景
根据这些事实,可以很简单地回答我们的问题,就是说:由少量原子组成的这些结构,能否长时间地经受住象遗传物质不断受到的那种热运动的干扰影响?我们将假定一个基因的结构是一个巨大的分子,只能发生不连续的变化,这种变化是在于原子的重新排列并导致一种同分异构的分子。这种重新排列也许只影响到基因中的一小部分区域,大量的各种不同的重新排列也许是可能的。从任何可能的同分异构体中,把实际的构型分离出来的阈能一定是很高的(这是同一个原子的平均热能相比),以致使这种变化成为一种罕有事件。这种罕有事件我们认为就是自发突变。
本章的以后几部分将致力于检验基因和突变的一般描述(主要应归功于德国物理学家M。德尔勃留克),把它同遗传学事实作详细的比较。在此之前,我们可以对这一理论的基础和一般性质适当地作些评论。
41。 图景的独特性
为生物学问题去穷根究底,并把图景建立在量子力学的基础之上,这是绝对必要的吗?基因是一个分子,这样的猜测,我敢说,在今天已是老生常谈了。不管他是不是熟悉量子