°Ëϲµç×ÓÊé > ¾­¹ÜÆäËûµç×ÓÊé > the+critique+of+pure+reason_´¿´âÀíÐÔÅúÅÐ >

µÚ34²¿·Ö

the+critique+of+pure+reason_´¿´âÀíÐÔÅúÅÐ-µÚ34²¿·Ö

С˵£º the+critique+of+pure+reason_´¿´âÀíÐÔÅúÅÐ ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡



character¡¡of¡¡an¡¡a¡¡priori¡¡necessity¡¡indeed£»¡¡but¡¡only¡¡under¡¡the
condition¡¡of¡¡empirical¡¡thought¡¡in¡¡an¡¡experience£»¡¡therefore¡¡only
mediately¡¡and¡¡indirectly¡£¡¡Consequently¡¡they¡¡will¡¡not¡¡possess¡¡that
immediate¡¡evidence¡¡which¡¡is¡¡peculiar¡¡to¡¡the¡¡former£»¡¡although¡¡their
application¡¡to¡¡experience¡¡does¡¡not£»¡¡for¡¡that¡¡reason£»¡¡lose¡¡its¡¡truth
and¡¡certitude¡£¡¡But¡¡of¡¡this¡¡point¡¡we¡¡shall¡¡be¡¡better¡¡able¡¡to¡¡judge¡¡at
the¡¡conclusion¡¡of¡¡this¡¡system¡¡of¡¡principles¡£
¡¡¡¡The¡¡table¡¡of¡¡the¡¡categories¡¡is¡¡naturally¡¡our¡¡guide¡¡to¡¡the¡¡table¡¡of
principles£»¡¡because¡¡these¡¡are¡¡nothing¡¡else¡¡than¡¡rules¡¡for¡¡the
objective¡¡employment¡¡of¡¡the¡¡former¡£¡¡Accordingly£»¡¡all¡¡principles¡¡of¡¡the
pure¡¡understanding¡¡are£º

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡1
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Axioms
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡of¡¡Intuition

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡2¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡3
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Anticipations¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Analogies
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡of¡¡Perception¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡of¡¡Experience
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡4
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Postulates¡¡of
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Empirical¡¡Thought
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡in¡¡general

¡¡¡¡These¡¡appellations¡¡I¡¡have¡¡chosen¡¡advisedly£»¡¡in¡¡order¡¡that¡¡we¡¡might
not¡¡lose¡¡sight¡¡of¡¡the¡¡distinctions¡¡in¡¡respect¡¡of¡¡the¡¡evidence¡¡and
the¡¡employment¡¡of¡¡these¡¡principles¡£¡¡It¡¡will£»¡¡however£»¡¡soon¡¡appear
that¡­¡¡a¡¡fact¡¡which¡¡concerns¡¡both¡¡the¡¡evidence¡¡of¡¡these¡¡principles£»¡¡and
the¡¡a¡¡priori¡¡determination¡¡of¡¡phenomena¡­¡¡according¡¡to¡¡the¡¡categories
of¡¡quantity¡¡and¡¡quality¡¡£¨if¡¡we¡¡attend¡¡merely¡¡to¡¡the¡¡form¡¡of¡¡these£©£»
the¡¡principles¡¡of¡¡these¡¡categories¡¡are¡¡distinguishable¡¡from¡¡those¡¡of
the¡¡two¡¡others£»¡¡in¡¡as¡¡much¡¡as¡¡the¡¡former¡¡are¡¡possessed¡¡of¡¡an
intuitive£»¡¡but¡¡the¡¡latter¡¡of¡¡a¡¡merely¡¡discursive£»¡¡though¡¡in¡¡both
instances¡¡a¡¡plete£»¡¡certitude¡£¡¡I¡¡shall¡¡therefore¡¡call¡¡the¡¡former
mathematical£»¡¡and¡¡the¡¡latter¡¡dynamical¡¡principles¡£*¡¡It¡¡must¡¡be
observed£»¡¡however£»¡¡that¡¡by¡¡these¡¡terms¡¡I¡¡mean¡¡just¡¡as¡¡little¡¡in¡¡the
one¡¡case¡¡the¡¡principles¡¡of¡¡mathematics¡¡as¡¡those¡¡of¡¡general
£¨physical£©¡¡dynamics¡¡in¡¡the¡¡other¡£¡¡I¡¡have¡¡here¡¡in¡¡view¡¡merely¡¡the
principles¡¡of¡¡the¡¡pure¡¡understanding£»¡¡in¡¡their¡¡application¡¡to¡¡the
internal¡¡sense¡¡£¨without¡¡distinction¡¡of¡¡the¡¡representations¡¡given
therein£©£»¡¡by¡¡means¡¡of¡¡which¡¡the¡¡sciences¡¡of¡¡mathematics¡¡and¡¡dynamics
bee¡¡possible¡£¡¡Accordingly£»¡¡I¡¡have¡¡named¡¡these¡¡principles¡¡rather
with¡¡reference¡¡to¡¡their¡¡application¡¡than¡¡their¡¡content£»¡¡and¡¡I¡¡shall
now¡¡proceed¡¡to¡¡consider¡¡them¡¡in¡¡the¡¡order¡¡in¡¡which¡¡they¡¡stand¡¡in¡¡the
table¡£

¡¡¡¡*All¡¡bination¡¡£¨conjunctio£©¡¡is¡¡either¡¡position¡¡£¨positio£©
or¡¡connection¡¡£¨nexus£©¡£¡¡The¡¡former¡¡is¡¡the¡¡synthesis¡¡of¡¡a¡¡manifold£»
the¡¡parts¡¡of¡¡which¡¡do¡¡not¡¡necessarily¡¡belong¡¡to¡¡each¡¡other¡£¡¡For
example£»¡¡the¡¡two¡¡triangles¡¡into¡¡which¡¡a¡¡square¡¡is¡¡divided¡¡by¡¡a
diagonal£»¡¡do¡¡not¡¡necessarily¡¡belong¡¡to¡¡each¡¡other£»¡¡and¡¡of¡¡this¡¡kind¡¡is
the¡¡synthesis¡¡of¡¡the¡¡homogeneous¡¡in¡¡everything¡¡that¡¡can¡¡be
mathematically¡¡considered¡£¡¡This¡¡synthesis¡¡can¡¡be¡¡divided¡¡into¡¡those¡¡of
aggregation¡¡and¡¡coalition£»¡¡the¡¡former¡¡of¡¡which¡¡is¡¡applied¡¡to
extensive£»¡¡the¡¡latter¡¡to¡¡intensive¡¡quantities¡£¡¡The¡¡second¡¡sort¡¡of
bination¡¡£¨nexus£©¡¡is¡¡the¡¡synthesis¡¡of¡¡a¡¡manifold£»¡¡in¡¡so¡¡far¡¡as¡¡its
parts¡¡do¡¡belong¡¡necessarily¡¡to¡¡each¡¡other£»¡¡for¡¡example£»¡¡the¡¡accident
to¡¡a¡¡substance£»¡¡or¡¡the¡¡effect¡¡to¡¡the¡¡cause¡£¡¡Consequently¡¡it¡¡is¡¡a
synthesis¡¡of¡¡that¡¡which¡¡though¡¡heterogeneous£»¡¡is¡¡represented¡¡as
connected¡¡a¡¡priori¡£¡¡This¡¡bination¡­¡¡not¡¡an¡¡arbitrary¡¡one¡­¡¡I
entitle¡¡dynamical¡¡because¡¡it¡¡concerns¡¡the¡¡connection¡¡of¡¡the
existence¡¡of¡¡the¡¡manifold¡£¡¡This£»¡¡again£»¡¡may¡¡be¡¡divided¡¡into¡¡the
physical¡¡synthesis£»¡¡of¡¡the¡¡phenomena¡¡divided¡¡among¡¡each¡¡other£»¡¡and¡¡the
metaphysical¡¡synthesis£»¡¡or¡¡the¡¡connection¡¡of¡¡phenomena¡¡a¡¡priori¡¡in¡¡the
faculty¡¡of¡¡cognition¡£

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡1¡£¡¡AXIOMS¡¡OF¡¡INTUITION¡£
¡¡¡¡¡¡¡¡¡¡The¡¡principle¡¡of¡¡these¡¡is£º¡¡All¡¡Intuitions¡¡are¡¡Extensive
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Quantities¡£

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡PROOF¡£

¡¡¡¡All¡¡phenomena¡¡contain£»¡¡as¡¡regards¡¡their¡¡form£»¡¡an¡¡intuition¡¡in
space¡¡and¡¡time£»¡¡which¡¡lies¡¡a¡¡priori¡¡at¡¡the¡¡foundation¡¡of¡¡all¡¡without
exception¡£¡¡Phenomena£»¡¡therefore£»¡¡cannot¡¡be¡¡apprehended£»¡¡that¡¡is£»
received¡¡into¡¡empirical¡¡consciousness¡¡otherwise¡¡than¡¡through¡¡the
synthesis¡¡of¡¡a¡¡manifold£»¡¡through¡¡which¡¡the¡¡representations¡¡of¡¡a
determinate¡¡space¡¡or¡¡time¡¡are¡¡generated£»¡¡that¡¡is¡¡to¡¡say£»¡¡through¡¡the
position¡¡of¡¡the¡¡homogeneous¡¡and¡¡the¡¡consciousness¡¡of¡¡the
synthetical¡¡unity¡¡of¡¡this¡¡manifold¡¡£¨homogeneous£©¡£¡¡Now¡¡the
consciousness¡¡of¡¡a¡¡homogeneous¡¡manifold¡¡in¡¡intuition£»¡¡in¡¡so¡¡far¡¡as
thereby¡¡the¡¡representation¡¡of¡¡an¡¡object¡¡is¡¡rendered¡¡possible£»¡¡is¡¡the
conception¡¡of¡¡a¡¡quantity¡¡£¨quanti£©¡£¡¡Consequently£»¡¡even¡¡the¡¡perception
of¡¡an¡¡object¡¡as¡¡phenomenon¡¡is¡¡possible¡¡only¡¡through¡¡the¡¡same
synthetical¡¡unity¡¡of¡¡the¡¡manifold¡¡of¡¡the¡¡given¡¡sensuous¡¡intuition£»
through¡¡which¡¡the¡¡unity¡¡of¡¡the¡¡position¡¡of¡¡the¡¡homogeneous¡¡manifold
in¡¡the¡¡conception¡¡of¡¡a¡¡quantity¡¡is¡¡cogitated£»¡¡that¡¡is¡¡to¡¡say£»¡¡all
phenomena¡¡are¡¡quantities£»¡¡and¡¡extensive¡¡quantities£»¡¡because¡¡as
intuitions¡¡in¡¡space¡¡or¡¡time¡¡they¡¡must¡¡be¡¡represented¡¡by¡¡means¡¡of¡¡the
same¡¡synthesis¡¡through¡¡which¡¡space¡¡and¡¡time¡¡themselves¡¡are¡¡determined¡£
¡¡¡¡An¡¡extensive¡¡quantity¡¡I¡¡call¡¡that¡¡wherein¡¡the¡¡representation¡¡of
the¡¡parts¡¡renders¡¡possible¡¡£¨and¡¡therefore¡¡necessarily¡¡antecedes£©¡¡the
representation¡¡of¡¡the¡¡whole¡£¡¡I¡¡cannot¡¡represent¡¡to¡¡myself¡¡any¡¡line£»
however¡¡small£»¡¡without¡¡drawing¡¡it¡¡in¡¡thought£»¡¡that¡¡is£»¡¡without
generating¡¡from¡¡a¡¡point¡¡all¡¡its¡¡parts¡¡one¡¡after¡¡another£»¡¡and¡¡in¡¡this
way¡¡alone¡¡producing¡¡this¡¡intuition¡£¡¡Precisely¡¡the¡¡same¡¡is¡¡the¡¡case
with¡¡every£»¡¡even¡¡the¡¡smallest£»¡¡portion¡¡of¡¡time¡£¡¡I¡¡cogitate¡¡therein
only¡¡the¡¡successive¡¡progress¡¡from¡¡one¡¡moment¡¡to¡¡another£»¡¡and¡¡hence£»¡¡by
means¡¡of¡¡the¡¡different¡¡portions¡¡of¡¡time¡¡and¡¡the¡¡addition¡¡of¡¡them£»¡¡a
determinate¡¡quantity¡¡of¡¡time¡¡is¡¡produced¡£¡¡As¡¡the¡¡pure¡¡intuition¡¡in¡¡all
phenomena¡¡is¡¡either¡¡time¡¡or¡¡space£»¡¡so¡¡is¡¡every¡¡phenomenon¡¡in¡¡its
character¡¡of¡¡intuition¡¡an¡¡extensive¡¡quantity£»¡¡inasmuch¡¡as¡¡it¡¡can
only¡¡be¡¡cognized¡¡in¡¡our¡¡apprehension¡¡by¡¡successive¡¡synthesis¡¡£¨from
part¡¡to¡¡part£©¡£¡¡All¡¡phenomena¡¡are£»¡¡accordingly£»¡¡to¡¡be¡¡considered¡¡as
aggregates£»¡¡that¡¡is£»¡¡as¡¡a¡¡collection¡¡of¡¡previously¡¡given¡¡parts£»
which¡¡is¡¡not¡¡the¡¡case¡¡with¡¡every¡¡sort¡¡of¡¡quantities£»¡¡but¡¡only¡¡with
those¡¡which¡¡are¡¡represented¡¡and¡¡apprehended¡¡by¡¡us¡¡as¡¡extensive¡£
¡¡¡¡On¡¡this¡¡successive¡¡synthesis¡¡of¡¡the¡¡productive¡¡imagination£»¡¡in¡¡the
generation¡¡of¡¡figures£»¡¡is¡¡founded¡¡the¡¡mathematics¡¡of¡¡extension£»¡¡or
geometry£»¡¡with¡¡its¡¡axioms£»¡¡which¡¡express¡¡the¡¡conditions¡¡of¡¡sensuous
intuition¡¡a¡¡priori£»¡¡under¡¡which¡¡alone¡¡the¡¡schema¡¡of¡¡a¡¡pure
conception¡¡of¡¡external¡¡intuition¡¡can¡¡exist£»¡¡for¡¡example£»¡¡¡¨be¡¡tween¡¡two
points¡¡only¡¡one¡¡straight¡¡line¡¡is¡¡possible£»¡¨¡¡¡¨two¡¡straight¡¡lines¡¡cannot
enclose¡¡a¡¡space£»¡¨¡¡etc¡£¡¡These¡¡are¡¡the¡¡axioms¡¡which¡¡properly¡¡relate¡¡only
to¡¡quantities¡¡£¨quanta£©¡¡as¡¡such¡£
¡¡¡¡But£»¡¡as¡¡regards¡¡the¡¡quantity¡¡of¡¡a¡¡thing¡¡£¨quantitas£©£»¡¡that¡¡is¡¡to¡¡say£»
the¡¡answer¡¡to¡¡the¡¡question£º¡¡¡¨How¡¡large¡¡is¡¡this¡¡or¡¡that¡¡object£¿¡¨
although£»¡¡in¡¡respect¡¡to¡¡this¡¡question£»¡¡we¡¡have¡¡various¡¡propositions
synthetical¡¡and¡¡immediately¡¡certain¡¡£¨indemonstrabilia£©£»¡¡we¡¡have£»¡¡in
the¡¡proper¡¡sense¡¡of¡¡the¡¡term£»¡¡no¡¡axioms¡£¡¡For¡¡example£»¡¡the
propositions£º¡¡¡¨If¡¡equals¡¡be¡¡added¡¡to¡¡equals£»¡¡the¡¡wholes¡¡are¡¡equal¡¨£»
¡¨If¡¡equals¡¡be¡¡taken¡¡from¡¡equals£»¡¡the¡¡remainders¡¡are¡¡equal¡¨£»¡¡are
analytical£»¡¡because¡¡I¡¡am¡¡immediately¡¡conscious¡¡of¡¡the¡¡identity¡¡of
the¡¡production¡¡of¡¡the¡¡one¡¡quantity¡¡with¡¡the¡¡production¡¡of¡¡the¡¡other£»
whereas¡¡axioms¡¡must¡¡be¡¡a¡¡priori¡¡synthetical¡¡propositions¡£¡¡On¡¡the¡¡other
hand£»¡¡the¡¡self¡­evident¡¡propositions¡¡as¡¡to¡¡the¡¡relation¡¡of¡¡numbers£»¡¡are
certainly¡¡synthetical¡¡but¡¡not¡¡universal£»¡¡like¡¡those¡¡of¡¡geometry£»¡¡and
for¡¡this¡¡reason¡¡cannot¡¡be¡¡called¡¡axioms£»¡¡but¡¡numerical¡¡formulae¡£
That¡¡7¡¡£«¡¡5¡¡=¡¡12¡¡is¡¡not¡¡an¡¡analytical¡¡proposition¡£¡¡For¡¡neither¡¡in¡¡the
representation¡¡of¡¡seven£»¡¡nor¡¡of¡¡five£»¡¡nor¡¡of¡¡the¡¡position¡¡of¡¡the
two¡¡numbers£»¡¡do¡¡I¡¡cogitate¡¡the¡¡number¡¡twelve¡£¡¡£¨Whether¡¡I¡¡cogitate
the¡¡number¡¡in¡¡the¡¡addition¡¡of¡¡both£»¡¡is¡¡not¡¡at¡¡present¡¡the¡¡question£»
for¡¡in¡¡the¡¡case¡¡of¡¡an¡¡analytical¡¡proposition£»¡¡the¡¡only¡¡point¡¡is
whether¡¡I¡¡really¡¡cogitate¡¡the¡¡predicate¡¡in¡¡the¡¡representation¡¡of¡¡the
subject¡££©¡¡But¡¡although¡¡the¡¡proposition¡¡is¡¡synthetical£»¡¡it¡¡is
nevertheless¡¡only¡¡a¡¡singular¡¡proposition¡£¡¡In¡¡so¡¡far¡¡as¡¡regard¡¡is
here¡¡had¡¡merely¡¡to¡¡the¡¡synthesis¡¡of¡¡the¡¡homogeneous¡¡£¨the¡¡units£©£»¡¡it
cannot¡¡take¡¡place¡¡except¡¡in¡¡one¡¡manner£»¡¡although¡¡our¡¡use¡¡of¡¡these
numbers¡¡is¡¡afterwards¡¡general¡£¡¡If¡¡I¡¡say£º¡¡¡¨A¡¡triangle¡¡can¡¡be
constructed¡¡with¡¡three¡¡lines£»¡¡any¡¡two¡¡of¡¡which¡¡taken¡¡together¡¡are
greater¡¡than¡¡the¡¡third£»¡¨¡¡I¡¡exercise¡¡merely¡¡the¡¡pure¡¡function¡¡of¡¡the
productive¡¡imagination£»¡¡which¡¡may¡¡draw¡¡the¡¡lines¡¡longer¡¡or¡¡shorter¡¡and
construct¡¡the¡¡angles¡¡at¡¡its¡¡pleasure¡£¡¡On¡¡the¡¡contrary£»¡¡the¡¡number
seven¡¡is¡¡possible¡¡only¡¡in¡¡one¡¡manner£»¡¡and¡¡so¡¡is¡¡likewise¡¡the¡¡number
twelve£»¡¡which¡¡results¡¡from¡¡the¡¡synthesis¡¡of¡¡seven¡¡and¡¡five¡£¡¡Such
propositions£»¡¡then£»¡¡cannot¡¡be¡¡termed¡¡axioms¡¡£¨for¡¡in¡¡that¡¡case¡¡we
should¡¡have¡¡an¡¡infinity¡¡of¡¡these£©£»¡¡but¡¡numerical¡¡formulae¡£
¡¡¡¡This¡¡transcendental¡¡principle¡¡of¡¡the¡¡mathematics¡¡of¡¡phenomena
greatly¡¡enlarges¡¡our¡¡a¡¡priori¡¡cognition¡£¡¡For¡¡it¡¡is¡¡by¡¡this¡¡principle
alone¡¡that¡¡pure¡¡mathematics¡¡is¡¡rendered¡¡applicable¡¡in¡¡all¡¡its
precision¡¡to¡¡objects¡¡of¡¡experience£»¡¡and¡¡without¡¡it¡¡the¡¡validity¡¡of
this¡¡application¡¡would¡¡not¡¡be¡¡so¡¡self¡­evident£»¡¡on¡¡the¡¡contrary£»
contradictions¡¡and¡¡confusions¡¡have¡¡often¡¡arisen¡¡on¡¡this¡¡very¡¡point¡£
Phenomena¡¡are¡¡not¡¡things¡¡in¡¡themselves¡£¡¡Empirical¡¡intuition¡¡is
possible¡¡only¡¡through¡¡pure¡¡intuition¡¡£¨of¡¡space¡¡and¡¡time£©£»
consequently£»¡¡what¡¡geometry¡¡affirms¡¡of¡¡the¡¡latter£»¡¡is¡¡indisputably
valid¡¡of¡¡the¡¡former¡£¡¡All¡¡evasions£»¡¡such¡¡as¡¡the¡¡statement¡¡that
objects¡¡of¡¡sense¡¡do¡¡not¡¡conform¡¡to¡¡the¡¡rules¡¡of¡¡construction¡¡in
space¡¡£¨for¡¡example£»¡¡to¡¡the¡¡rule¡¡of¡¡the¡¡infinite¡¡divisibility¡¡of
lines¡¡or¡¡angles£©£»¡¡must¡¡fall¡¡to¡¡the¡¡ground¡£¡¡For£»¡¡if¡¡these¡¡objections
hold¡¡good£»¡¡we¡¡deny¡¡to¡¡space£»¡¡and¡¡with¡¡it¡¡to¡¡all¡¡mathematics£»¡¡objective
validity£»¡¡and¡¡no¡¡longer¡¡know¡¡wherefore£»¡¡and¡¡how¡¡far£»¡¡mathematics¡¡can
be¡¡applied¡¡to¡¡phenomena¡£¡¡The¡¡synthesis¡¡of¡¡spaces¡¡and¡¡times¡¡as¡¡the
essential¡¡form¡¡of¡¡all¡¡intuition£»¡¡is¡¡that¡¡which¡¡renders¡¡possible¡¡the
apprehension¡¡of¡¡a¡¡phenomenon£»¡¡and¡¡therefore¡¡every¡¡external¡¡experience£»
consequently¡¡all¡¡cognition¡¡of¡¡the¡¡objects¡¡of¡¡experience£»¡¡and
whatever¡¡mathematics¡¡in¡¡its¡¡pure¡¡use¡¡proves¡¡of¡¡the¡¡former£»¡¡must
necessarily¡¡hold¡¡good¡¡of¡¡the¡¡latter¡£¡¡All¡¡objections¡¡are¡¡but¡¡the
chicaneries¡¡of¡¡an¡¡ill¡­instructed¡¡reason£»¡¡which¡¡e

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨1£© ²È£¨1£©

Äã¿ÉÄÜϲ»¶µÄ