aeroplanes-µÚ17²¿·Ö
°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·ҳ£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡
for¡¡this¡¡purpose¡¡it¡¡would¡¡be¡¡convenient¡¡to¡¡make
the¡¡plane¡¡E¡¡exactly¡¡one¡¡foot¡¡square¡£
DETERMINING¡¡THE¡¡PRESSURE¡¡FROM¡¡THE¡¡SPEED¡£
These¡¡two¡¡instruments¡¡can¡¡be¡¡made¡¡to¡¡check¡¡each
other¡¡and¡¡thus¡¡pretty¡¡accurately¡¡enable¡¡you¡¡to
determine¡¡the¡¡proper¡¡places¡¡to¡¡mark¡¡the¡¡pressure
indicator£»¡¡as¡¡well¡¡as¡¡to¡¡make¡¡the¡¡wheels¡¡in¡¡the
anemometer¡¡the¡¡proper¡¡size¡¡to¡¡turn¡¡the¡¡pointer
in¡¡seconds¡¡when¡¡the¡¡wind¡¡is¡¡blowing¡¡at¡¡a¡¡certain
speed£»¡¡say¡¡ten¡¡miles¡¡per¡¡hour¡£
Suppose¡¡the¡¡air¡¡pressure¡¡indicator¡¡has¡¡the¡¡scale
divided¡¡into¡¡quarter¡¡pound¡¡marks¡£¡¡This¡¡will
make¡¡it¡¡accurate¡¡enough¡¡for¡¡all¡¡purposes¡£
CALCULATING¡¡PRESSURES¡¡FROM¡¡SPEED¡£The¡¡following
table¡¡will¡¡give¡¡the¡¡pressures¡¡from¡¡5¡¡to¡¡100
miles¡¡per¡¡hour£º
Velocity¡¡of¡¡wind¡¡in¡¡Pressure¡¡¡¡¡¡Velocity¡¡of¡¡wind¡¡in¡¡¡¡Pressure
miles¡¡per¡¡hour¡¡¡¡¡¡¡¡¡¡per¡¡sq¡£¡¡ft¡£¡¡¡¡miles¡¡per¡¡hour¡¡¡¡¡¡¡¡¡¡per¡¡sq¡¡ft
¡¡¡¡¡¡¡¡¡¡5¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡£112¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡55¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡15¡£125
¡¡¡¡¡¡¡¡¡¡10¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡£500¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡60¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡18¡£000
¡¡¡¡¡¡¡¡¡¡15¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡1¡£125¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡65¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡21¡£125
¡¡¡¡¡¡¡¡¡¡20¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡2¡£000¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡70¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡22¡£500
¡¡¡¡¡¡¡¡¡¡25¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡3¡£125¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡75¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡28¡£125
¡¡¡¡¡¡¡¡¡¡30¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡4¡£600¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡80¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡32¡£000
¡¡¡¡¡¡¡¡¡¡35¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡6¡£126¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡86¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡36¡£126
¡¡¡¡¡¡¡¡¡¡40¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡8¡£000¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡90¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡40¡£500
¡¡¡¡¡¡¡¡¡¡45¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡10¡£125¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡95¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡45¡£125
¡¡¡¡¡¡¡¡¡¡50¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡12¡£5¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡100¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡50¡£000
HOW¡¡THE¡¡FIGURES¡¡ARE¡¡DETERMINED¡£The¡¡foregoing
figures¡¡are¡¡determined¡¡in¡¡the¡¡following¡¡manner£º
As¡¡an¡¡example¡¡let¡¡us¡¡assume¡¡that¡¡the¡¡velocity
of¡¡the¡¡wind¡¡is¡¡forty¡five¡¡miles¡¡per¡¡hour¡£¡¡If
this¡¡is¡¡squared£»¡¡or¡¡45¡¡multiplied¡¡by¡¡45£»¡¡the¡¡product
is¡¡2025¡£¡¡In¡¡many¡¡calculations¡¡the¡¡mathematician
employs¡¡what¡¡is¡¡called¡¡a¡¡constant£»¡¡a¡¡figure¡¡that
never¡¡varies£»¡¡and¡¡which¡¡is¡¡used¡¡to¡¡multiply¡¡or
divide¡¡certain¡¡factors¡£
In¡¡this¡¡case¡¡the¡¡constant¡¡is¡¡5/1000£»¡¡or£»¡¡as¡¡usually
written£»¡¡¡£005¡£¡¡This¡¡is¡¡the¡¡same¡¡as¡¡one¡¡two¡¡hundredths
of¡¡the¡¡squared¡¡figure¡£¡¡That¡¡would¡¡make
the¡¡problem¡¡as¡¡follows£º
¡¡¡¡¡¡¡¡¡¡45¡¡X¡¡45¡¡=¡¡2025¡¡/¡¡200¡¡=¡¡10¡£125£»¡¡or£»
¡¡¡¡¡¡¡¡¡¡45¡¡X¡¡45¡¡¡¡¡2025¡¡X¡¡¡£005¡¡=¡¡10¡£125¡£
Again£»¡¡twenty¡five¡¡miles¡¡per¡¡hour¡¡would¡¡be
25¡¡X¡¡25¡¡=¡¡625£»¡¡and¡¡this¡¡multiplied¡¡by¡¡¡£005¡¡equals
2¡¡pounds¡¡pressure¡£
CONVERTING¡¡HOURS¡¡INTO¡¡MINUTES¡£It¡¡is¡¡sometimes
confusing¡¡to¡¡think¡¡of¡¡miles¡¡per¡¡hour£»¡¡when
you¡¡wish¡¡to¡¡express¡¡it¡¡in¡¡minutes¡¡or¡¡seconds¡£¡¡A
simple¡¡rule£»¡¡which¡¡is¡¡not¡¡absolutely¡¡accurate£»¡¡but
is¡¡correct¡¡within¡¡a¡¡few¡¡feet£»¡¡in¡¡order¡¡to¡¡express
the¡¡speed¡¡in¡¡feet¡¡per¡¡minute£»¡¡is¡¡to¡¡multiply¡¡the
figure¡¡indicating¡¡the¡¡miles¡¡per¡¡hour£»¡¡by¡¡8¡¡3/4¡£
To¡¡illustrate£º¡¡If¡¡the¡¡wind¡¡is¡¡moving¡¡at¡¡the
rate¡¡of¡¡twenty¡¡miles¡¡an¡¡hour£»¡¡it¡¡will¡¡travel¡¡in¡¡that
time¡¡105£»600¡¡feet¡¡£¨5280¡¡X¡¡20£©¡£¡¡As¡¡there¡¡are¡¡sixty
minutes¡¡in¡¡an¡¡hour£»¡¡105£»600¡¡divided¡¡by¡¡60£»¡¡equals
1760¡¡feet¡¡per¡¡minute¡£¡¡Instead¡¡of¡¡going¡¡through
all¡¡this¡¡process¡¡of¡¡calculating¡¡the¡¡speed¡¡per¡¡minute£»
remember¡¡to¡¡multiply¡¡the¡¡speed¡¡in¡¡miles¡¡per
hour¡¡by¡¡90£»¡¡which¡¡will¡¡give¡¡1800¡¡feet¡£
This¡¡is¡¡a¡¡little¡¡more¡¡then¡¡two¡¡per¡¡cent¡£¡¡above
the¡¡correct¡¡figure¡£¡¡Again£»¡¡40¡¡X¡¡90¡¡equals¡¡3600¡£
As¡¡the¡¡correct¡¡figure¡¡is¡¡3520£»¡¡a¡¡little¡¡mental¡¡calculation
will¡¡enable¡¡you¡¡to¡¡correct¡¡the¡¡figures¡¡so
as¡¡to¡¡get¡¡it¡¡within¡¡a¡¡few¡¡feet¡£
CHANGING¡¡SPEED¡¡HOURS¡¡TO¡¡SECONDS¡£As¡¡one¡
sixtieth¡¡of¡¡the¡¡speed¡¡per¡¡minute¡¡will¡¡represent¡¡the
rate¡¡of¡¡movement¡¡per¡¡second£»¡¡it¡¡is¡¡a¡¡comparatively
easy¡¡matter¡¡to¡¡convert¡¡the¡¡time¡¡from¡¡speed¡¡in
miles¡¡per¡¡hour¡¡to¡¡fraction¡¡of¡¡a¡¡mile¡¡traveled¡¡in
a¡¡second£»¡¡by¡¡merely¡¡taking¡¡one¡half¡¡of¡¡the¡¡speed
in¡¡miles£»¡¡and¡¡adding¡¡it£»¡¡which¡¡will¡¡very¡¡nearly¡¡express
the¡¡true¡¡number¡¡of¡¡feet¡£
As¡¡examples£»¡¡take¡¡the¡¡following£º¡¡If¡¡the¡¡wind
is¡¡traveling¡¡20¡¡miles¡¡an¡¡hour£»¡¡it¡¡is¡¡easy¡¡to¡¡take
one¡half¡¡of¡¡20£»¡¡which¡¡is¡¡10£»¡¡and¡¡add¡¡it¡¡to¡¡20£»¡¡making
30£»¡¡as¡¡the¡¡number¡¡of¡¡feet¡¡per¡¡second¡£¡¡If¡¡the
wind¡¡travels¡¡50¡¡miles¡¡per¡¡hour£»¡¡add¡¡25£»¡¡making
75£»¡¡as¡¡the¡¡speed¡¡per¡¡second¡£
The¡¡correct¡¡speed¡¡per¡¡second¡¡of¡¡a¡¡wind¡¡traveling
20¡¡miles¡¡an¡¡hour¡¡is¡¡a¡¡little¡¡over¡¡29¡¡feet¡£¡¡At
50¡¡miles¡¡per¡¡hour£»¡¡the¡¡correct¡¡figure¡¡is¡¡73¡¡1/3¡¡feet£»
which¡¡show¡¡that¡¡the¡¡figures¡¡under¡¡this¡¡rule¡¡are
within¡¡about¡¡one¡¡per¡¡cent¡£¡¡of¡¡being¡¡correct¡£
With¡¡the¡¡table¡¡before¡¡you¡¡it¡¡will¡¡be¡¡an¡¡easy
matter£»¡¡by¡¡observing¡¡the¡¡air¡¡pressure¡¡indicator£»
to¡¡determine¡¡the¡¡proper¡¡speed¡¡for¡¡the¡¡anemometer¡£
Suppose¡¡it¡¡shows¡¡a¡¡pressure¡¡of¡¡two¡¡pounds£»
which¡¡will¡¡indicate¡¡a¡¡speed¡¡of¡¡twenty¡¡miles¡¡an
hour¡£¡¡You¡¡have¡¡thus¡¡a¡¡fixed¡¡point¡¡to¡¡start¡¡from¡£
PRESSURE¡¡AS¡¡THE¡¡SQUARE¡¡OF¡¡THE¡¡SPEED¡£Now
it¡¡must¡¡not¡¡be¡¡assumed¡¡that¡¡if¡¡the¡¡pressure¡¡at
twenty¡¡miles¡¡an¡¡hour¡¡is¡¡two¡¡pounds£»¡¡that¡¡forty
miles¡¡an¡¡hour¡¡it¡¡is¡¡four¡¡pounds¡£¡¡The¡¡pressure
is¡¡as¡¡the¡¡square¡¡of¡¡the¡¡speed¡£¡¡This¡¡may¡¡be¡¡explained
as¡¡follows£º¡¡As¡¡the¡¡speed¡¡of¡¡the¡¡wind
increases£»¡¡it¡¡has¡¡a¡¡more¡¡effective¡¡push¡¡against¡¡an
object¡¡than¡¡its¡¡rate¡¡of¡¡speed¡¡indicates£»¡¡and¡¡this
is¡¡most¡¡simply¡¡expressed¡¡by¡¡saying¡¡that¡¡each¡¡time
the¡¡speed¡¡is¡¡doubled¡¡the¡¡pressure¡¡is¡¡four¡¡times
greater¡£
As¡¡an¡¡example¡¡of¡¡this£»¡¡let¡¡us¡¡take¡¡a¡¡speed¡¡of¡¡ten
miles¡¡an¡¡hour£»¡¡which¡¡means¡¡a¡¡pressure¡¡of¡¡one¡
half¡¡pound¡£¡¡Double¡¡this¡¡speed£»¡¡and¡¡we¡¡have¡¡20
miles¡£¡¡Multiplying¡¡one¡half¡¡pound¡¡by¡¡4£»¡¡the¡¡result
is¡¡2¡¡pounds¡£¡¡Again£»¡¡double¡¡20£»¡¡which¡¡means
40¡¡miles£»¡¡and¡¡multiplying¡¡2¡¡by¡¡4£»¡¡the¡¡result¡¡is¡¡8¡£
Doubling¡¡forty¡¡is¡¡eighty¡¡miles¡¡an¡¡hour£»¡¡and¡¡again
multiplying¡¡8¡¡by¡¡4£»¡¡we¡¡have¡¡32¡¡as¡¡the¡¡pounds¡¡pressure
at¡¡a¡¡speed¡¡of¡¡80¡¡miles¡¡an¡¡hour¡£
The¡¡anemometer£»¡¡however£»¡¡is¡¡constant¡¡in¡¡its
speed¡£¡¡If¡¡the¡¡pointer¡¡should¡¡turn¡¡once¡¡a¡¡second
at¡¡10¡¡miles¡¡an¡¡hour£»¡¡it¡¡would¡¡turn¡¡twice¡¡at¡¡20¡¡miles
an¡¡hour£»¡¡and¡¡four¡¡times¡¡a¡¡second¡¡at¡¡40¡¡miles¡¡an
hour¡£
GYROSCOPIC¡¡BALANCE¡£Some¡¡advance¡¡has¡¡been
made¡¡in¡¡the¡¡use¡¡of¡¡the¡¡gyroscope¡¡for¡¡the¡¡purpose
of¡¡giving¡¡lateral¡¡stability¡¡to¡¡an¡¡aeroplane¡£¡¡While
the¡¡best¡¡of¡¡such¡¡devices¡¡is¡¡at¡¡best¡¡a¡¡makeshift£»
it¡¡is¡¡well¡¡to¡¡understand¡¡the¡¡principle¡¡on¡¡which¡¡they
operate£»¡¡and¡¡to¡¡get¡¡an¡¡understanding¡¡how¡¡they¡¡are
applied¡£
THE¡¡PRINCIPLE¡¡INVOLVED¡£The¡¡only¡¡thing
known¡¡about¡¡the¡¡gyroscope¡¡is£»¡¡that¡¡it¡¡objects¡¡to
changing¡¡the¡¡plane¡¡of¡¡its¡¡rotation¡£¡¡This¡¡statement
must¡¡be¡¡taken¡¡with¡¡some¡¡allowance£»¡¡however£»
as£»¡¡when¡¡left¡¡free¡¡to¡¡move£»¡¡it¡¡will¡¡change¡¡in
one¡¡direction¡£
To¡¡explain¡¡this¡¡without¡¡being¡¡too¡¡technical£»¡¡examine
Fig¡£¡¡63£»¡¡which¡¡shows¡¡a¡¡gyroscopic¡¡top£»¡¡one
end¡¡of¡¡the¡¡rim¡¡A£»¡¡which¡¡supports¡¡the¡¡rotating
wheel¡¡B£»¡¡having¡¡a¡¡projecting¡¡finger¡¡C£»¡¡that¡¡is
mounted¡¡on¡¡a¡¡pin¡point¡¡on¡¡the¡¡upper¡¡end¡¡of¡¡the
pedestal¡¡D¡£
_Fig¡£¡¡63¡£¡¡The¡¡Gyroscope¡£_
When¡¡the¡¡wheel¡¡B¡¡is¡¡set¡¡in¡¡rotation¡¡it¡¡will¡¡maintain
itself¡¡so¡¡that¡¡its¡¡axis¡¡E¡¡is¡¡horizontal£»¡¡or¡¡at
any¡¡other¡¡angle¡¡that¡¡the¡¡top¡¡is¡¡placed¡¡in¡¡when¡¡the
wheel¡¡is¡¡spun¡£¡¡If¡¡it¡¡is¡¡set¡¡so¡¡the¡¡axis¡¡is¡¡horizontal
the¡¡wheel¡¡B¡¡will¡¡rotate¡¡on¡¡a¡¡vertical¡¡plane£»
and¡¡it¡¡forcibly¡¡objects¡¡to¡¡any¡¡attempt¡¡to¡¡make¡¡it
turn¡¡except¡¡in¡¡the¡¡direction¡¡indicated¡¡by¡¡the
curved¡¡arrows¡¡F¡£
The¡¡wheel¡¡B¡¡will¡¡cause¡¡the¡¡axis¡¡E¡¡to¡¡swing
around¡¡on¡¡a¡¡horizontal¡¡plane£»¡¡and¡¡this¡¡turning
movement¡¡is¡¡always¡¡in¡¡a¡¡certain¡¡direction¡¡in¡¡relation
to¡¡the¡¡turn¡¡of¡¡the¡¡wheel¡¡B£»¡¡and¡¡it¡¡is¡¡obvious£»
therefore£»¡¡that¡¡to¡¡make¡¡a¡¡gyroscope¡¡that
will¡¡not¡¡move£»¡¡or¡¡swing¡¡around¡¡an¡¡axis£»¡¡the¡¡placing
of¡¡two¡¡such¡¡wheels¡¡side¡¡by¡¡side£»¡¡and¡¡rotated
in¡¡opposite¡¡directions£»¡¡will¡¡maintain¡¡them¡¡in¡¡a
fixed¡¡position£»¡¡this¡¡can¡¡also¡¡be¡¡accomplished¡¡by
so¡¡mounting¡¡the¡¡two¡¡that¡¡one¡¡rotates¡¡on¡¡a¡¡plane
at¡¡right¡¡angles¡¡to¡¡the¡¡other¡£
_Fig¡£¡¡64¡£¡¡Application¡¡of¡¡the¡¡Gyroscope¡£_
THE¡¡APPLICATION¡¡OF¡¡THE¡¡GYROSCOPE¡£Without
in¡¡any¡¡manner¡¡showing¡¡the¡¡structural¡¡details¡¡of
the¡¡device£»¡¡in¡¡its¡¡application¡¡to¡¡a¡¡flying¡¡machine£»
except¡¡in¡¡so¡¡far¡¡as¡¡it¡¡may¡¡be¡¡necessary¡¡to¡¡explain
its¡¡operation£»¡¡we¡¡refer¡¡to¡¡Fig¡£¡¡64£»¡¡which
assumes¡¡that¡¡A¡¡represents¡¡the¡¡frame¡¡of¡¡the¡¡aeroplane£»
and¡¡B¡¡a¡¡frame¡¡for¡¡holding¡¡the¡¡gyroscopic
wheel¡¡C£»¡¡the¡¡latter¡¡being¡¡mounted¡¡so¡¡it¡¡rotates¡¡on
a¡¡horizontal¡¡plane£»¡¡and¡¡the¡¡frame¡¡B¡¡being¡¡hinged
fore¡¡and¡¡aft£»¡¡so¡¡that¡¡it¡¡is¡¡free¡¡to¡¡swing¡¡to¡¡the¡¡right
or¡¡to¡¡the¡¡left¡£
For¡¡convenience¡¡in¡¡explaining¡¡the¡¡action£»¡¡the
planes¡¡E¡¡are¡¡placed¡¡at¡¡right¡¡angles¡¡to¡¡their¡¡regular
positions£»¡¡F¡¡being¡¡the¡¡forward¡¡margin¡¡of¡¡the
plane£»¡¡and¡¡G¡¡the¡¡rear¡¡edge¡£¡¡Wires¡¡H¡¡connect
the¡¡ends¡¡of¡¡the¡¡frame¡¡B¡¡with¡¡the¡¡respective
planes£»¡¡or¡¡ailerons£»¡¡E£»¡¡and¡¡another¡¡wire¡¡I¡¡joins
the¡¡downwardly¡projecting¡¡arms¡¡of¡¡the¡¡two
ailerons£»¡¡so¡¡that¡¡motion¡¡is¡¡transmitted¡¡to¡¡both¡¡at
the¡¡same¡¡time£»¡¡and¡¡by¡¡a¡¡positive¡¡motion¡¡in¡¡either
direction¡£
_Fig¡£¡¡65¡£¡¡Action¡¡of¡¡the¡¡Gyroscope¡£_
In¡¡the¡¡second¡¡figure£»¡¡65£»¡¡the¡¡frame¡¡of¡¡the¡¡aeroplane
is¡¡shown¡¡tilted¡¡at¡¡an¡¡angle£»¡¡so¡¡that¡¡its¡¡right
side¡¡is¡¡elevated¡£¡¡As¡¡the¡¡gyroscopic¡¡wheel¡¡remains
level¡¡it¡¡causes¡¡the¡¡aileron¡¡on¡¡the¡¡right¡¡side¡¡to
change¡¡to¡¡a¡¡negative¡¡angle£»¡¡while¡¡at¡¡the¡¡same
time¡¡giving¡¡a¡¡positive¡¡angle¡¡to¡¡the¡¡aileron¡¡on¡¡the
left¡¡side£»¡¡which¡¡would£»¡¡as¡¡a¡¡result£»¡¡depress¡¡the
right¡¡side£»¡¡and¡¡bring¡¡the¡¡frame¡¡of¡¡the¡¡machine
back¡¡to¡¡a¡¡horizontal¡¡position¡£
FORE¡¡AND¡¡AFT¡¡GYROSCOPIC¡¡CONTROL¡£It¡¡is
obvious¡¡that¡¡the¡¡same¡¡application¡¡of¡¡this¡¡force¡¡may
be¡¡applied¡¡to¡¡control¡¡the¡¡ship¡¡fore¡¡and¡¡aft£»¡¡although
it¡¡is¡¡doubtful¡¡whether¡¡such¡¡a¡¡plan¡¡would
have¡¡any¡¡advantages£»¡¡since¡¡this¡¡should¡¡be¡¡wholly
within¡¡the¡¡control¡¡of¡¡the¡¡pilot¡£
Laterally¡¡the¡¡ship¡¡should¡¡not¡¡be¡¡out¡¡of¡¡balance£»
fore¡¡and¡¡aft¡¡this¡¡is¡¡a¡¡necessity£»¡¡and¡¡as¡¡the¡¡great
trouble¡¡with¡¡all¡¡aeroplanes¡¡is¡¡to¡¡control¡¡them
laterally£»¡¡it¡¡may¡¡well¡¡be¡¡doubted¡¡whether¡¡it¡¡would
add¡¡anything¡¡of¡¡value¡¡to¡¡the¡¡machine¡¡by¡¡having
an¡¡automatic¡¡fore¡¡and¡¡aft¡¡control£»¡¡which¡¡might£»
in¡¡emergencies£»¡¡counteract¡¡the¡¡personal¡¡control¡¡of
the¡¡operator¡£
ANGLE¡¡INDICATOR¡£In¡¡flight¡¡it¡¡is¡¡an¡¡exceedingly
difficult¡¡matter¡¡for¡¡the¡¡pilot¡¡to¡¡give¡¡an¡¡accurate
idea¡¡of¡¡the¡¡angle¡¡of¡¡the¡¡planes¡£¡¡If¡¡the¡¡air¡¡is
calm¡¡and¡¡he¡¡is¡¡moving¡¡over¡¡a¡¡certain¡¡course£»¡¡and
knows£»¡¡from¡¡experience£»¡¡what¡¡his¡¡speed¡¡is£»¡¡he¡¡may
be¡¡able¡¡to¡¡judge¡¡of¡¡this¡¡factor£»¡¡but¡¡he¡¡cannot¡¡tell
what¡¡changes¡¡take¡¡place¡¡under¡¡certain¡¡conditions
during¡¡the¡¡flight¡£
For¡¡this¡¡purpose¡¡a¡¡simple¡¡little¡¡indicator¡¡may
be¡¡provided£»¡¡shown¡¡in¡¡Fig¡£¡¡66£»¡¡which¡¡is¡¡me