八喜电子书 > 经管其他电子书 > c语言教程 >

第19部分

c语言教程-第19部分

小说: c语言教程 字数: 每页4000字

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



求学号顺序插入一个结点。设被插结点的指针为pi。 可在三种不同情况下插入。
1。 原表是空表,只需使head指向被插结点即可。见图7。7(a)
2。 被插结点值最小,应插入第一结点之前。这种情况下使head指向被插结点,被插结点的指针域指向原来的第一结点则可。即:pi…》next=pb;
head=pi; 见图7。7(b)
3。 在其它位置插入,见图7。7(c)。这种情况下,使插入位置的前一结点的指针域指向被插结点,使被插结点的指针域指向插入位置的后一结点。即为:pi…》next=pb;pf…》next=pi;
4。 在表末插入,见图7。7(d)。这种情况下使原表末结点指针域指向被插结点,被插结点指针域置为NULL。即:
pb…》next=pi;
pi…》next=NULL; TYPE * insert(TYPE * head;TYPE *pi)

TYPE *pf;*pb;
pb=head;
if(headNULL) /*空表插入*/
(head=pi;
pi…》next=NULL;}
else

while((pi…》num》pb…》num)&&(pb…》next!=NULL))
{pf=pb;
pb=pb…》next; }/*找插入位置*/
if(pi…》numnum)
{if(headpb)head=pi;/*在第一结点之前插入*/
else pf…》next=pi;/*在其它位置插入*/
pi…》next=pb; }
else
{pb…》next=pi;
pi…》next=NULL;} /*在表末插入*/

return head;}
  本函数有两个形参均为指针变量,head指向链表,pi 指向被插结点。函数中首先判断链表是否为空,为空则使head指向被插结点。表若不空,则用while语句循环查找插入位置。找到之后再判断是否在第一结点之前插入,若是则使head 指向被插结点被插结点指针域指向原第一结点,否则在其它位置插入, 若插入的结点大于表中所有结点,则在表末插入。本函数返回一个指针, 是链表的头指针。 当插入的位置在第一个结点之前时, 插入的新结点成为链表的第一个结点,因此head的值也有了改变, 故需要把这个指针返回主调函数。
'例7。14'将以上建立链表,删除结点,插入结点的函数组织在一起,再建一个输出全部结点的函数,然后用main函数调用它们。
#define NULL 0
#define TYPE struct stu
#define LEN sizeof(struct stu)
struct stu

int num;
int age;
struct stu *next;
};
TYPE * creat(int n)

struct stu *head;*pf;*pb;
int i;
for(i=0;inum;&pb…》age);
if(i0)
pf=head=pb;
else pf…》next=pb;
pb…》next=NULL;
pf=pb;

return(head);

TYPE * delete(TYPE * head;int num)

TYPE *pf;*pb;
if(headNULL)
{ printf(〃nempty list!n〃);
goto end;}
pb=head;
while (pb…》num!=num && pb…》next!=NULL)
{pf=pb;pb=pb…》next;}
if(pb…》numnum)
{ if(pbhead) head=pb…》next;
else pf…》next=pb…》next;
printf(〃The node is deletedn〃); }
else
free(pb);
printf(〃The node not been found!n〃);
end:
return head;

TYPE * insert(TYPE * head;TYPE * pi)

TYPE *pb ;*pf;
pb=head;
if(headNULL)
{ head=pi;
pi…》next=NULL; }
else

while((pi…》num》pb…》num)&&(pb…》next!=NULL))
{ pf=pb;
pb=pb…》next; }
if(pi…》numnum)
{ if(headpb) head=pi;
else pf…》next=pi;
pi…》next=pb; }
else
{ pb…》next=pi;
pi…》next=NULL; }

return head;

void print(TYPE * head)

printf(〃NumberttAgen〃);
while(head!=NULL)

printf(〃%dtt%dn〃;head…》num;head…》age);
head=head…》next;


main()

TYPE * head;*pnum;
int n;num;
printf(〃input number of node: 〃);
scanf(〃%d〃;&n);
head=creat(n);
print(head);
printf(〃Input the deleted number: 〃);
scanf(〃%d〃;&num);
head=delete(head;num);
print(head);
printf(〃Input the inserted number and age: 〃);
pnum=(TYPE *)malloc(LEN);
scanf(〃%d%d〃;&pnum…》num;&pnum…》age);
head=insert(head;pnum);
print(head);

  本例中,print函数用于输出链表中各个结点数据域值。函数的形参head的初值指向链表第一个结点。在while语句中,输出结点值后,head值被改变,指向下一结点。若保留头指针head, 则应另设一个指针变量,把head值赋予它,再用它来替代head。在main函数中,n为建立结点的数目, num为待删结点的数据域值;head为指向链表的头指针,pnum为指向待插结点的指针。 main函数中各行的意义是:
第六行输入所建链表的结点数;
第七行调creat函数建立链表并把头指针返回给head;
第八行调print函数输出链表;
第十行输入待删结点的学号;
第十一行调delete函数删除一个结点;
第十二行调print函数输出链表;
第十四行调malloc函数分配一个结点的内存空间, 并把其地址赋予pnum;
第十五行输入待插入结点的数据域值;
第十六行调insert函数插入pnum所指的结点;
第十七行再次调print函数输出链表。

  从运行结果看,首先建立起3个结点的链表,并输出其值;再删103号结点,只剩下105,108号结点;又输入106号结点数据, 插入后链表中的结点为105,106,108。联合“联合”也是一种构造类型的数据结构。 在一个“联合”内可以定义多种不同的数据类型, 一个被说明为该“联合”类型的变量中,允许装入该“联合”所定义的任何一种数据。 这在前面的各种数据类型中都是办不到的。例如, 定义为整型的变量只能装入整型数据,定义为实型的变量只能赋予实型数据。

  在实际问题中有很多这样的例子。 例如在学校的教师和学生中填写以下表格: 姓 名 年 龄 职 业 单位 “职业”一项可分为“教师”和“学生”两类。 对“单位”一项学生应填入班级编号,教师应填入某系某教研室。 班级可用整型量表示,教研室只能用字符类型。 要求把这两种类型不同的数据都填入“单位”这个变量中, 就必须把“单位”定义为包含整型和字符型数组这两种类型的“联合”。 

  “联合”与“结构”有一些相似之处。但两者有本质上的不同。在结构中各成员有各自的内存空间, 一个结构变量的总长度是各成员长度之和。而在“联合”中,各成员共享一段内存空间, 一个联合变量的长度等于各成员中最长的长度。应该说明的是, 这里所谓的共享不是指把多个成员同时装入一个联合变量内, 而是指该联合变量可被赋予任一成员值,但每次只能赋一种值, 赋入新值则冲去旧值。如前面介绍的“单位”变量, 如定义为一个可装入“班级”或“教研室”的联合后,就允许赋予整型值(班级)或字符串(教研室)。要么赋予整型值,要么赋予字符串,不能把两者同时赋予它。联合类型的定义和联合变量的说明一个联合类型必须经过定义之后, 才能把变量说明为该联合类型。

一、联合的定义

定义一个联合类型的一般形式为: 
union 联合名 
{ 
成员表 
};
成员表中含有若干成员,成员的一般形式为: 类型说明符 成员名 成员名的命名应符合标识符的规定。
例如: 
union perdata

int class;
char office'10';
};
  定义了一个名为perdata的联合类型,它含有两个成员,一个为整型,成员名为class;另一个为字符数组,数组名为office。联合定义之后,即可进行联合变量说明,被说明为perdata类型的变量,可以存放整型量class或存放字符数组office。

二、联合变量的说明

  联合变量的说明和结构变量的说明方式相同, 也有三种形式。即先定义,再说明;定义同时说明和直接说明。以perdata类型为例,说明如下: 
union perdata

int class;
char officae'10';
};
union perdata a;b; /*说明a;b为perdata类型*/
或者可同时说明为: 
union perdata
{ int class;
char office'10'; }a;b;或直接说明为: union
{ int class;
char office'10'; }a;b 
经说明后的a;b变量均为perdata类型。 它们的内存分配示意图如图7—8所示。a;b变量的长度应等于 perdata 的成员中最长的长度, 即等于
office数组的长度,共10个字节。从图中可见,a;b变量如赋予整型值时,只使用了2个字节,而赋予字符数组时,可用10个字节。

联合变量的赋值和使用

  对联合变量的赋值,使用都只能是对变量的成员进行。 联合变量的成员表示为: 联合变量名。成员名 例如,a被说明为perdata类型的变量之后,可使用 a。class a。office 不允许只用联合变量名作赋值或其它操作。 也不允许对联合变量作初始化赋值,赋值只能在程序中进行。还要再强调说明的是,一个联合变量, 每次只能赋予一个成员值。换句话说,一个联合变量的值就是联合变员的某一个成员值。
'例7。15'设有一个教师与学生通用的表格,教师数据有姓名,年龄,职业,教研室四项。学生有姓名,年龄,职业,班级四项。
编程输入人员数据, 再以表格输出。
main()

struct

char name'10';
int age;
char job;
union

int class;
char office'10';
} depa;
}body'2';
int n;i;
for(i=0;i

返回目录 上一页 下一页 回到顶部 1 1

你可能喜欢的