°Ëϲµç×ÓÊé > ¾­¹ÜÆäËûµç×ÓÊé > the critique of pure reason >

µÚ110²¿·Ö

the critique of pure reason-µÚ110²¿·Ö

С˵£º the critique of pure reason ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡




suspect¡¡it¡¡to¡¡be¡¡capable¡¡of¡¡substituting¡¡fancies¡¡for¡¡conceptions£»

and¡¡words¡¡for¡¡things¡£

¡¡¡¡Reason£»¡¡when¡¡employed¡¡in¡¡the¡¡field¡¡of¡¡experience£»¡¡does¡¡not¡¡stand

in¡¡need¡¡of¡¡criticism£»¡¡because¡¡its¡¡principles¡¡are¡¡subjected¡¡to¡¡the

continual¡¡test¡¡of¡¡empirical¡¡observations¡£¡¡Nor¡¡is¡¡criticism¡¡requisite

in¡¡the¡¡sphere¡¡of¡¡mathematics£»¡¡where¡¡the¡¡conceptions¡¡of¡¡reason¡¡must

always¡¡be¡¡presented¡¡in¡¡concreto¡¡in¡¡pure¡¡intuition£»¡¡and¡¡baseless¡¡or

arbitrary¡¡assertions¡¡are¡¡discovered¡¡without¡¡difficulty¡£¡¡But¡¡where

reason¡¡is¡¡not¡¡held¡¡in¡¡a¡¡plain¡¡track¡¡by¡¡the¡¡influence¡¡of¡¡empirical¡¡or

of¡¡pure¡¡intuition£»¡¡that¡¡is£»¡¡when¡¡it¡¡is¡¡employed¡¡in¡¡the

transcendental¡¡sphere¡¡of¡¡pure¡¡conceptions£»¡¡it¡¡stands¡¡in¡¡great¡¡need

of¡¡discipline£»¡¡to¡¡restrain¡¡its¡¡propensity¡¡to¡¡overstep¡¡the¡¡limits¡¡of

possible¡¡experience¡¡and¡¡to¡¡keep¡¡it¡¡from¡¡wandering¡¡into¡¡error¡£¡¡In¡¡fact£»

the¡¡utility¡¡of¡¡the¡¡philosophy¡¡of¡¡pure¡¡reason¡¡is¡¡entirely¡¡of¡¡this

negative¡¡character¡£¡¡Particular¡¡errors¡¡may¡¡be¡¡corrected¡¡by¡¡particular

animadversions£»¡¡and¡¡the¡¡causes¡¡of¡¡these¡¡errors¡¡may¡¡be¡¡eradicated¡¡by

criticism¡£¡¡But¡¡where¡¡we¡¡find£»¡¡as¡¡in¡¡the¡¡case¡¡of¡¡pure¡¡reason£»¡¡a

complete¡¡system¡¡of¡¡illusions¡¡and¡¡fallacies£»¡¡closely¡¡connected¡¡with

each¡¡other¡¡and¡¡depending¡¡upon¡¡grand¡¡general¡¡principles£»¡¡there¡¡seems¡¡to

be¡¡required¡¡a¡¡peculiar¡¡and¡¡negative¡¡code¡¡of¡¡mental¡¡legislation£»¡¡which£»

under¡¡the¡¡denomination¡¡of¡¡a¡¡discipline£»¡¡and¡¡founded¡¡upon¡¡the¡¡nature¡¡of

reason¡¡and¡¡the¡¡objects¡¡of¡¡its¡¡exercise£»¡¡shall¡¡constitute¡¡a¡¡system¡¡of

thorough¡¡examination¡¡and¡¡testing£»¡¡which¡¡no¡¡fallacy¡¡will¡¡be¡¡able¡¡to

withstand¡¡or¡¡escape¡¡from£»¡¡under¡¡whatever¡¡disguise¡¡or¡¡concealment¡¡it

may¡¡lurk¡£

¡¡¡¡But¡¡the¡¡reader¡¡must¡¡remark¡¡that£»¡¡in¡¡this¡¡the¡¡second¡¡division¡¡of

our¡¡transcendental¡¡Critique¡¡the¡¡discipline¡¡of¡¡pure¡¡reason¡¡is¡¡not

directed¡¡to¡¡the¡¡content£»¡¡but¡¡to¡¡the¡¡method¡¡of¡¡the¡¡cognition¡¡of¡¡pure

reason¡£¡¡The¡¡former¡¡task¡¡has¡¡been¡¡completed¡¡in¡¡the¡¡doctrine¡¡of

elements¡£¡¡But¡¡there¡¡is¡¡so¡¡much¡¡similarity¡¡in¡¡the¡¡mode¡¡of¡¡employing¡¡the

faculty¡¡of¡¡reason£»¡¡whatever¡¡be¡¡the¡¡object¡¡to¡¡which¡¡it¡¡is¡¡applied£»

while£»¡¡at¡¡the¡¡same¡¡time£»¡¡its¡¡employment¡¡in¡¡the¡¡transcendental¡¡sphere

is¡¡so¡¡essentially¡¡different¡¡in¡¡kind¡¡from¡¡every¡¡other£»¡¡that£»¡¡without

the¡¡warning¡¡negative¡¡influence¡¡of¡¡a¡¡discipline¡¡specially¡¡directed¡¡to

that¡¡end£»¡¡the¡¡errors¡¡are¡¡unavoidable¡¡which¡¡spring¡¡from¡¡the

unskillful¡¡employment¡¡of¡¡the¡¡methods¡¡which¡¡are¡¡originated¡¡by¡¡reason

but¡¡which¡¡are¡¡out¡¡of¡¡place¡¡in¡¡this¡¡sphere¡£



¡¡¡¡¡¡¡¡¡¡SECTION¡¡I¡£¡¡The¡¡Discipline¡¡of¡¡Pure¡¡Reason¡¡in¡¡the¡¡Sphere

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡of¡¡Dogmatism¡£



¡¡¡¡The¡¡science¡¡of¡¡mathematics¡¡presents¡¡the¡¡most¡¡brilliant¡¡example¡¡of

the¡¡extension¡¡of¡¡the¡¡sphere¡¡of¡¡pure¡¡reason¡¡without¡¡the¡¡aid¡¡of

experience¡£¡¡Examples¡¡are¡¡always¡¡contagious£»¡¡and¡¡they¡¡exert¡¡an¡¡especial

influence¡¡on¡¡the¡¡same¡¡faculty£»¡¡which¡¡naturally¡¡flatters¡¡itself¡¡that¡¡it

will¡¡have¡¡the¡¡same¡¡good¡¡fortune¡¡in¡¡other¡¡case¡¡as¡¡fell¡¡to¡¡its¡¡lot¡¡in

one¡¡fortunate¡¡instance¡£¡¡Hence¡¡pure¡¡reason¡¡hopes¡¡to¡¡be¡¡able¡¡to¡¡extend

its¡¡empire¡¡in¡¡the¡¡transcendental¡¡sphere¡¡with¡¡equal¡¡success¡¡and

security£»¡¡especially¡¡when¡¡it¡¡applies¡¡the¡¡same¡¡method¡¡which¡¡was

attended¡¡with¡¡such¡¡brilliant¡¡results¡¡in¡¡the¡¡science¡¡of¡¡mathematics¡£¡¡It

is£»¡¡therefore£»¡¡of¡¡the¡¡highest¡¡importance¡¡for¡¡us¡¡to¡¡know¡¡whether¡¡the

method¡¡of¡¡arriving¡¡at¡¡demonstrative¡¡certainty£»¡¡which¡¡is¡¡termed

mathematical£»¡¡be¡¡identical¡¡with¡¡that¡¡by¡¡which¡¡we¡¡endeavour¡¡to¡¡attain

the¡¡same¡¡degree¡¡of¡¡certainty¡¡in¡¡philosophy£»¡¡and¡¡which¡¡is¡¡termed¡¡in

that¡¡science¡¡dogmatical¡£

¡¡¡¡Philosophical¡¡cognition¡¡is¡¡the¡¡cognition¡¡of¡¡reason¡¡by¡¡means¡¡of

conceptions£»¡¡mathematical¡¡cognition¡¡is¡¡cognition¡¡by¡¡means¡¡of¡¡the

construction¡¡of¡¡conceptions¡£¡¡The¡¡construction¡¡of¡¡a¡¡conception¡¡is¡¡the

presentation¡¡a¡¡priori¡¡of¡¡the¡¡intuition¡¡which¡¡corresponds¡¡to¡¡the

conception¡£¡¡For¡¡this¡¡purpose¡¡a¡¡non¡­empirical¡¡intuition¡¡is¡¡requisite£»

which£»¡¡as¡¡an¡¡intuition£»¡¡is¡¡an¡¡individual¡¡object£»¡¡while£»¡¡as¡¡the

construction¡¡of¡¡a¡¡conception¡¡£¨a¡¡general¡¡representation£©£»¡¡it¡¡must¡¡be

seen¡¡to¡¡be¡¡universally¡¡valid¡¡for¡¡all¡¡the¡¡possible¡¡intuitions¡¡which

rank¡¡under¡¡that¡¡conception¡£¡¡Thus¡¡I¡¡construct¡¡a¡¡triangle£»¡¡by¡¡the

presentation¡¡of¡¡the¡¡object¡¡which¡¡corresponds¡¡to¡¡this¡¡conception£»

either¡¡by¡¡mere¡¡imagination£»¡¡in¡¡pure¡¡intuition£»¡¡or¡¡upon¡¡paper£»¡¡in

empirical¡¡intuition£»¡¡in¡¡both¡¡cases¡¡completely¡¡a¡¡priori£»¡¡without

borrowing¡¡the¡¡type¡¡of¡¡that¡¡figure¡¡from¡¡any¡¡experience¡£¡¡The

individual¡¡figure¡¡drawn¡¡upon¡¡paper¡¡is¡¡empirical£»¡¡but¡¡it¡¡serves£»

notwithstanding£»¡¡to¡¡indicate¡¡the¡¡conception£»¡¡even¡¡in¡¡its¡¡universality£»

because¡¡in¡¡this¡¡empirical¡¡intuition¡¡we¡¡keep¡¡our¡¡eye¡¡merely¡¡on¡¡the

act¡¡of¡¡the¡¡construction¡¡of¡¡the¡¡conception£»¡¡and¡¡pay¡¡no¡¡attention¡¡to¡¡the

various¡¡modes¡¡of¡¡determining¡¡it£»¡¡for¡¡example£»¡¡its¡¡size£»¡¡the¡¡length

of¡¡its¡¡sides£»¡¡the¡¡size¡¡of¡¡its¡¡angles£»¡¡these¡¡not¡¡in¡¡the¡¡least¡¡affecting

the¡¡essential¡¡character¡¡of¡¡the¡¡conception¡£

¡¡¡¡Philosophical¡¡cognition£»¡¡accordingly£»¡¡regards¡¡the¡¡particular¡¡only¡¡in

the¡¡general£»¡¡mathematical¡¡the¡¡general¡¡in¡¡the¡¡particular£»¡¡nay£»¡¡in¡¡the

individual¡£¡¡This¡¡is¡¡done£»¡¡however£»¡¡entirely¡¡a¡¡priori¡¡and¡¡by¡¡means¡¡of

pure¡¡reason£»¡¡so¡¡that£»¡¡as¡¡this¡¡individual¡¡figure¡¡is¡¡determined¡¡under

certain¡¡universal¡¡conditions¡¡of¡¡construction£»¡¡the¡¡object¡¡of¡¡the

conception£»¡¡to¡¡which¡¡this¡¡individual¡¡figure¡¡corresponds¡¡as¡¡its¡¡schema£»

must¡¡be¡¡cogitated¡¡as¡¡universally¡¡determined¡£

¡¡¡¡The¡¡essential¡¡difference¡¡of¡¡these¡¡two¡¡modes¡¡of¡¡cognition¡¡consists£»

therefore£»¡¡in¡¡this¡¡formal¡¡quality£»¡¡it¡¡does¡¡not¡¡regard¡¡the¡¡difference

of¡¡the¡¡matter¡¡or¡¡objects¡¡of¡¡both¡£¡¡Those¡¡thinkers¡¡who¡¡aim¡¡at

distinguishing¡¡philosophy¡¡from¡¡mathematics¡¡by¡¡asserting¡¡that¡¡the

former¡¡has¡¡to¡¡do¡¡with¡¡quality¡¡merely£»¡¡and¡¡the¡¡latter¡¡with¡¡quantity£»

have¡¡mistaken¡¡the¡¡effect¡¡for¡¡the¡¡cause¡£¡¡The¡¡reason¡¡why¡¡mathematical

cognition¡¡can¡¡relate¡¡only¡¡to¡¡quantity¡¡is¡¡to¡¡be¡¡found¡¡in¡¡its¡¡form

alone¡£¡¡For¡¡it¡¡is¡¡the¡¡conception¡¡of¡¡quantities¡¡only¡¡that¡¡is¡¡capable

of¡¡being¡¡constructed£»¡¡that¡¡is£»¡¡presented¡¡a¡¡priori¡¡in¡¡intuition£»

while¡¡qualities¡¡cannot¡¡be¡¡given¡¡in¡¡any¡¡other¡¡than¡¡an¡¡empirical

intuition¡£¡¡Hence¡¡the¡¡cognition¡¡of¡¡qualities¡¡by¡¡reason¡¡is¡¡possible¡¡only

through¡¡conceptions¡£¡¡No¡¡one¡¡can¡¡find¡¡an¡¡intuition¡¡which¡¡shall

correspond¡¡to¡¡the¡¡conception¡¡of¡¡reality£»¡¡except¡¡in¡¡experience£»¡¡it

cannot¡¡be¡¡presented¡¡to¡¡the¡¡mind¡¡a¡¡priori¡¡and¡¡antecedently¡¡to¡¡the

empirical¡¡consciousness¡¡of¡¡a¡¡reality¡£¡¡We¡¡can¡¡form¡¡an¡¡intuition£»¡¡by

means¡¡of¡¡the¡¡mere¡¡conception¡¡of¡¡it£»¡¡of¡¡a¡¡cone£»¡¡without¡¡the¡¡aid¡¡of

experience£»¡¡but¡¡the¡¡colour¡¡of¡¡the¡¡cone¡¡we¡¡cannot¡¡know¡¡except¡¡from

experience¡£¡¡I¡¡cannot¡¡present¡¡an¡¡intuition¡¡of¡¡a¡¡cause£»¡¡except¡¡in¡¡an

example¡¡which¡¡experience¡¡offers¡¡to¡¡me¡£¡¡Besides£»¡¡philosophy£»¡¡as¡¡well¡¡as

mathematics£»¡¡treats¡¡of¡¡quantities£»¡¡as£»¡¡for¡¡example£»¡¡of¡¡totality£»

infinity£»¡¡and¡¡so¡¡on¡£¡¡Mathematics£»¡¡too£»¡¡treats¡¡of¡¡the¡¡difference¡¡of

lines¡¡and¡¡surfaces¡­¡¡as¡¡spaces¡¡of¡¡different¡¡quality£»¡¡of¡¡the

continuity¡¡of¡¡extension¡­¡¡as¡¡a¡¡quality¡¡thereof¡£¡¡But£»¡¡although¡¡in¡¡such

cases¡¡they¡¡have¡¡a¡¡common¡¡object£»¡¡the¡¡mode¡¡in¡¡which¡¡reason¡¡considers

that¡¡object¡¡is¡¡very¡¡different¡¡in¡¡philosophy¡¡from¡¡what¡¡it¡¡is¡¡in

mathematics¡£¡¡The¡¡former¡¡confines¡¡itself¡¡to¡¡the¡¡general¡¡conceptions£»

the¡¡latter¡¡can¡¡do¡¡nothing¡¡with¡¡a¡¡mere¡¡conception£»¡¡it¡¡hastens¡¡to

intuition¡£¡¡In¡¡this¡¡intuition¡¡it¡¡regards¡¡the¡¡conception¡¡in¡¡concreto£»

not¡¡empirically£»¡¡but¡¡in¡¡an¡¡a¡¡priori¡¡intuition£»¡¡which¡¡it¡¡has

constructed£»¡¡and¡¡in¡¡which£»¡¡all¡¡the¡¡results¡¡which¡¡follow¡¡from¡¡the

general¡¡conditions¡¡of¡¡the¡¡construction¡¡of¡¡the¡¡conception¡¡are¡¡in¡¡all

cases¡¡valid¡¡for¡¡the¡¡object¡¡of¡¡the¡¡constructed¡¡conception¡£

¡¡¡¡Suppose¡¡that¡¡the¡¡conception¡¡of¡¡a¡¡triangle¡¡is¡¡given¡¡to¡¡a

philosopher¡¡and¡¡that¡¡he¡¡is¡¡required¡¡to¡¡discover£»¡¡by¡¡the

philosophical¡¡method£»¡¡what¡¡relation¡¡the¡¡sum¡¡of¡¡its¡¡angles¡¡bears¡¡to¡¡a

right¡¡angle¡£¡¡He¡¡has¡¡nothing¡¡before¡¡him¡¡but¡¡the¡¡conception¡¡of¡¡a

figure¡¡enclosed¡¡within¡¡three¡¡right¡¡lines£»¡¡and£»¡¡consequently£»¡¡with

the¡¡same¡¡number¡¡of¡¡angles¡£¡¡He¡¡may¡¡analyse¡¡the¡¡conception¡¡of¡¡a¡¡right

line£»¡¡of¡¡an¡¡angle£»¡¡or¡¡of¡¡the¡¡number¡¡three¡¡as¡¡long¡¡as¡¡he¡¡pleases£»¡¡but

he¡¡will¡¡not¡¡discover¡¡any¡¡properties¡¡not¡¡contained¡¡in¡¡these

conceptions¡£¡¡But£»¡¡if¡¡this¡¡question¡¡is¡¡proposed¡¡to¡¡a¡¡geometrician£»¡¡he

at¡¡once¡¡begins¡¡by¡¡constructing¡¡a¡¡triangle¡£¡¡He¡¡knows¡¡that¡¡two¡¡right

angles¡¡are¡¡equal¡¡to¡¡the¡¡sum¡¡of¡¡all¡¡the¡¡contiguous¡¡angles¡¡which¡¡proceed

from¡¡one¡¡point¡¡in¡¡a¡¡straight¡¡line£»¡¡and¡¡he¡¡goes¡¡on¡¡to¡¡produce¡¡one

side¡¡of¡¡his¡¡triangle£»¡¡thus¡¡forming¡¡two¡¡adjacent¡¡angles¡¡which¡¡are

together¡¡equal¡¡to¡¡two¡¡right¡¡angles¡£¡¡He¡¡then¡¡divides¡¡the¡¡exterior¡¡of

these¡¡angles£»¡¡by¡¡drawing¡¡a¡¡line¡¡parallel¡¡with¡¡the¡¡opposite¡¡side¡¡of¡¡the

triangle£»¡¡and¡¡immediately¡¡perceives¡¡that¡¡be¡¡has¡¡thus¡¡got¡¡an¡¡exterior

adjacent¡¡angle¡¡which¡¡is¡¡equal¡¡to¡¡the¡¡interior¡£¡¡Proceeding¡¡in¡¡this¡¡way£»

through¡¡a¡¡chain¡¡of¡¡inferences£»¡¡and¡¡always¡¡on¡¡the¡¡ground¡¡of

intuition£»¡¡he¡¡arrives¡¡at¡¡a¡¡clear¡¡and¡¡universally¡¡valid¡¡solution¡¡of¡¡the

question¡£

¡¡¡¡But¡¡mathematics¡¡does¡¡not¡¡confine¡¡itself¡¡to¡¡the¡¡construction¡¡of

quantities¡¡£¨quanta£©£»¡¡as¡¡in¡¡the¡¡case¡¡of¡¡geometry£»¡¡it¡¡occupies¡¡itself

with¡¡pure¡¡quantity¡¡also¡¡£¨quantitas£©£»¡¡as¡¡in¡¡the¡¡case¡¡of¡¡algebra£»

where¡¡complete¡¡abstraction¡¡is¡¡made¡¡of¡¡the¡¡properties¡¡of¡¡the¡¡object

indicated¡¡by¡¡the¡¡conception¡¡of¡¡quantity¡£¡¡In¡¡algebra£»¡¡a¡¡certain

method¡¡of¡¡notation¡¡by¡¡signs¡¡is¡¡adopted£»¡¡and¡¡these¡¡indicate¡¡the

different¡¡possible¡¡constructions¡¡of¡¡quantities£»¡¡the¡¡extraction¡¡of

roots£»¡¡and¡¡so¡¡on¡£¡¡After¡¡having¡¡thus¡¡denoted¡¡the¡¡general¡¡conception

of¡¡quantities£»¡¡according¡¡to¡¡their¡¡different¡¡relations£»¡¡the¡¡different

operations¡¡by¡¡which¡¡quantity¡¡or¡¡number¡¡is¡¡increased¡¡or¡¡diminished

are¡¡presented¡¡in¡¡intuition¡¡in¡¡accordance¡¡with¡¡general¡¡rules¡£¡¡Thus£»

when¡¡one¡¡quantity¡¡is¡¡to¡¡be¡¡divided¡¡by¡¡another£»¡¡the¡¡signs¡¡which

denote¡¡both¡¡are¡¡placed¡¡in¡¡the¡¡form¡¡peculiar¡¡to¡¡the¡¡operation¡¡of

division£»¡¡and¡¡thus¡¡algebra£»¡¡by¡¡means¡¡of¡¡a¡¡symbolical¡¡construction¡¡of

quantity£»¡¡just¡¡as¡¡geometry£»¡¡with¡¡its¡¡ostensive¡¡or¡¡geometrical

construction¡¡£¨a¡¡construction¡¡of¡¡the¡¡objects¡¡themselves£©£»¡¡arrives¡¡at

results¡¡which¡¡discursive¡¡cognition¡¡cannot¡¡hope¡¡to¡¡reach¡¡by¡¡the¡¡aid

of¡¡mere¡¡conceptions¡£

¡¡¡¡Now£»¡¡what¡¡is¡¡the¡¡cause¡¡of¡¡this¡¡difference¡¡in¡¡the¡¡fortune¡¡of¡¡the

philosopher¡¡and¡¡the¡¡mathematician£»¡¡the¡¡former¡¡of¡¡whom¡¡follows¡¡the¡¡path

of¡¡conceptions£»¡¡while¡¡the¡¡latter¡¡pursues¡¡that¡¡of¡¡intuitions£»¡¡which

he¡¡represents£»¡¡a¡¡priori£»¡¡in¡¡correspondence¡¡with¡¡his¡¡concep

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨0£©

Äã¿ÉÄÜϲ»¶µÄ