°Ëϲµç×ÓÊé > ¾­¹ÜÆäËûµç×ÓÊé > the critique of pure reason >

µÚ35²¿·Ö

the critique of pure reason-µÚ35²¿·Ö

С˵£º the critique of pure reason ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡




consequently¡¡their¡¡objective¡¡validity£»¡¡nay¡¡the¡¡possibility¡¡of¡¡such¡¡a

priori¡¡synthetical¡¡cognitions¡¡£¨the¡¡deduction¡¡thereof£©¡¡rests¡¡entirely

upon¡¡the¡¡pure¡¡understanding¡£

¡¡¡¡On¡¡this¡¡account£»¡¡I¡¡shall¡¡not¡¡reckon¡¡among¡¡my¡¡principles¡¡those¡¡of

mathematics£»¡¡though¡¡I¡¡shall¡¡include¡¡those¡¡upon¡¡the¡¡possibility¡¡and

objective¡¡validity¡¡a¡¡priori£»¡¡of¡¡principles¡¡of¡¡the¡¡mathematical

science£»¡¡which£»¡¡consequently£»¡¡are¡¡to¡¡be¡¡looked¡¡upon¡¡as¡¡the¡¡principle

of¡¡these£»¡¡and¡¡which¡¡proceed¡¡from¡¡conceptions¡¡to¡¡intuition£»¡¡and¡¡not

from¡¡intuition¡¡to¡¡conceptions¡£

¡¡¡¡In¡¡the¡¡application¡¡of¡¡the¡¡pure¡¡conceptions¡¡of¡¡the¡¡understanding¡¡to

possible¡¡experience£»¡¡the¡¡employment¡¡of¡¡their¡¡synthesis¡¡is¡¡either

mathematical¡¡or¡¡dynamical£»¡¡for¡¡it¡¡is¡¡directed¡¡partly¡¡on¡¡the

intuition¡¡alone£»¡¡partly¡¡on¡¡the¡¡existence¡¡of¡¡a¡¡phenomenon¡£¡¡But¡¡the¡¡a

priori¡¡conditions¡¡of¡¡intuition¡¡are¡¡in¡¡relation¡¡to¡¡a¡¡possible

experience¡¡absolutely¡¡necessary£»¡¡those¡¡of¡¡the¡¡existence¡¡of¡¡objects

of¡¡a¡¡possible¡¡empirical¡¡intuition¡¡are¡¡in¡¡themselves¡¡contingent¡£

Hence¡¡the¡¡principles¡¡of¡¡the¡¡mathematical¡¡use¡¡of¡¡the¡¡categories¡¡will

possess¡¡a¡¡character¡¡of¡¡absolute¡¡necessity£»¡¡that¡¡is£»¡¡will¡¡be

apodeictic£»¡¡those£»¡¡on¡¡the¡¡other¡¡hand£»¡¡of¡¡the¡¡dynamical¡¡use£»¡¡the

character¡¡of¡¡an¡¡a¡¡priori¡¡necessity¡¡indeed£»¡¡but¡¡only¡¡under¡¡the

condition¡¡of¡¡empirical¡¡thought¡¡in¡¡an¡¡experience£»¡¡therefore¡¡only

mediately¡¡and¡¡indirectly¡£¡¡Consequently¡¡they¡¡will¡¡not¡¡possess¡¡that

immediate¡¡evidence¡¡which¡¡is¡¡peculiar¡¡to¡¡the¡¡former£»¡¡although¡¡their

application¡¡to¡¡experience¡¡does¡¡not£»¡¡for¡¡that¡¡reason£»¡¡lose¡¡its¡¡truth

and¡¡certitude¡£¡¡But¡¡of¡¡this¡¡point¡¡we¡¡shall¡¡be¡¡better¡¡able¡¡to¡¡judge¡¡at

the¡¡conclusion¡¡of¡¡this¡¡system¡¡of¡¡principles¡£

¡¡¡¡The¡¡table¡¡of¡¡the¡¡categories¡¡is¡¡naturally¡¡our¡¡guide¡¡to¡¡the¡¡table¡¡of

principles£»¡¡because¡¡these¡¡are¡¡nothing¡¡else¡¡than¡¡rules¡¡for¡¡the

objective¡¡employment¡¡of¡¡the¡¡former¡£¡¡Accordingly£»¡¡all¡¡principles¡¡of¡¡the

pure¡¡understanding¡¡are£º



¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡1

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Axioms

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡of¡¡Intuition



¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡2¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡3

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Anticipations¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Analogies

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡of¡¡Perception¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡of¡¡Experience

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡4

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Postulates¡¡of

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Empirical¡¡Thought

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡in¡¡general



¡¡¡¡These¡¡appellations¡¡I¡¡have¡¡chosen¡¡advisedly£»¡¡in¡¡order¡¡that¡¡we¡¡might

not¡¡lose¡¡sight¡¡of¡¡the¡¡distinctions¡¡in¡¡respect¡¡of¡¡the¡¡evidence¡¡and

the¡¡employment¡¡of¡¡these¡¡principles¡£¡¡It¡¡will£»¡¡however£»¡¡soon¡¡appear

that¡­¡¡a¡¡fact¡¡which¡¡concerns¡¡both¡¡the¡¡evidence¡¡of¡¡these¡¡principles£»¡¡and

the¡¡a¡¡priori¡¡determination¡¡of¡¡phenomena¡­¡¡according¡¡to¡¡the¡¡categories

of¡¡quantity¡¡and¡¡quality¡¡£¨if¡¡we¡¡attend¡¡merely¡¡to¡¡the¡¡form¡¡of¡¡these£©£»

the¡¡principles¡¡of¡¡these¡¡categories¡¡are¡¡distinguishable¡¡from¡¡those¡¡of

the¡¡two¡¡others£»¡¡in¡¡as¡¡much¡¡as¡¡the¡¡former¡¡are¡¡possessed¡¡of¡¡an

intuitive£»¡¡but¡¡the¡¡latter¡¡of¡¡a¡¡merely¡¡discursive£»¡¡though¡¡in¡¡both

instances¡¡a¡¡complete£»¡¡certitude¡£¡¡I¡¡shall¡¡therefore¡¡call¡¡the¡¡former

mathematical£»¡¡and¡¡the¡¡latter¡¡dynamical¡¡principles¡£*¡¡It¡¡must¡¡be

observed£»¡¡however£»¡¡that¡¡by¡¡these¡¡terms¡¡I¡¡mean¡¡just¡¡as¡¡little¡¡in¡¡the

one¡¡case¡¡the¡¡principles¡¡of¡¡mathematics¡¡as¡¡those¡¡of¡¡general

£¨physical£©¡¡dynamics¡¡in¡¡the¡¡other¡£¡¡I¡¡have¡¡here¡¡in¡¡view¡¡merely¡¡the

principles¡¡of¡¡the¡¡pure¡¡understanding£»¡¡in¡¡their¡¡application¡¡to¡¡the

internal¡¡sense¡¡£¨without¡¡distinction¡¡of¡¡the¡¡representations¡¡given

therein£©£»¡¡by¡¡means¡¡of¡¡which¡¡the¡¡sciences¡¡of¡¡mathematics¡¡and¡¡dynamics

become¡¡possible¡£¡¡Accordingly£»¡¡I¡¡have¡¡named¡¡these¡¡principles¡¡rather

with¡¡reference¡¡to¡¡their¡¡application¡¡than¡¡their¡¡content£»¡¡and¡¡I¡¡shall

now¡¡proceed¡¡to¡¡consider¡¡them¡¡in¡¡the¡¡order¡¡in¡¡which¡¡they¡¡stand¡¡in¡¡the

table¡£



¡¡¡¡*All¡¡combination¡¡£¨conjunctio£©¡¡is¡¡either¡¡composition¡¡£¨compositio£©

or¡¡connection¡¡£¨nexus£©¡£¡¡The¡¡former¡¡is¡¡the¡¡synthesis¡¡of¡¡a¡¡manifold£»

the¡¡parts¡¡of¡¡which¡¡do¡¡not¡¡necessarily¡¡belong¡¡to¡¡each¡¡other¡£¡¡For

example£»¡¡the¡¡two¡¡triangles¡¡into¡¡which¡¡a¡¡square¡¡is¡¡divided¡¡by¡¡a

diagonal£»¡¡do¡¡not¡¡necessarily¡¡belong¡¡to¡¡each¡¡other£»¡¡and¡¡of¡¡this¡¡kind¡¡is

the¡¡synthesis¡¡of¡¡the¡¡homogeneous¡¡in¡¡everything¡¡that¡¡can¡¡be

mathematically¡¡considered¡£¡¡This¡¡synthesis¡¡can¡¡be¡¡divided¡¡into¡¡those¡¡of

aggregation¡¡and¡¡coalition£»¡¡the¡¡former¡¡of¡¡which¡¡is¡¡applied¡¡to

extensive£»¡¡the¡¡latter¡¡to¡¡intensive¡¡quantities¡£¡¡The¡¡second¡¡sort¡¡of

combination¡¡£¨nexus£©¡¡is¡¡the¡¡synthesis¡¡of¡¡a¡¡manifold£»¡¡in¡¡so¡¡far¡¡as¡¡its

parts¡¡do¡¡belong¡¡necessarily¡¡to¡¡each¡¡other£»¡¡for¡¡example£»¡¡the¡¡accident

to¡¡a¡¡substance£»¡¡or¡¡the¡¡effect¡¡to¡¡the¡¡cause¡£¡¡Consequently¡¡it¡¡is¡¡a

synthesis¡¡of¡¡that¡¡which¡¡though¡¡heterogeneous£»¡¡is¡¡represented¡¡as

connected¡¡a¡¡priori¡£¡¡This¡¡combination¡­¡¡not¡¡an¡¡arbitrary¡¡one¡­¡¡I

entitle¡¡dynamical¡¡because¡¡it¡¡concerns¡¡the¡¡connection¡¡of¡¡the

existence¡¡of¡¡the¡¡manifold¡£¡¡This£»¡¡again£»¡¡may¡¡be¡¡divided¡¡into¡¡the

physical¡¡synthesis£»¡¡of¡¡the¡¡phenomena¡¡divided¡¡among¡¡each¡¡other£»¡¡and¡¡the

metaphysical¡¡synthesis£»¡¡or¡¡the¡¡connection¡¡of¡¡phenomena¡¡a¡¡priori¡¡in¡¡the

faculty¡¡of¡¡cognition¡£



¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡1¡£¡¡AXIOMS¡¡OF¡¡INTUITION¡£

¡¡¡¡¡¡¡¡¡¡The¡¡principle¡¡of¡¡these¡¡is£º¡¡All¡¡Intuitions¡¡are¡¡Extensive

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Quantities¡£



¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡PROOF¡£



¡¡¡¡All¡¡phenomena¡¡contain£»¡¡as¡¡regards¡¡their¡¡form£»¡¡an¡¡intuition¡¡in

space¡¡and¡¡time£»¡¡which¡¡lies¡¡a¡¡priori¡¡at¡¡the¡¡foundation¡¡of¡¡all¡¡without

exception¡£¡¡Phenomena£»¡¡therefore£»¡¡cannot¡¡be¡¡apprehended£»¡¡that¡¡is£»

received¡¡into¡¡empirical¡¡consciousness¡¡otherwise¡¡than¡¡through¡¡the

synthesis¡¡of¡¡a¡¡manifold£»¡¡through¡¡which¡¡the¡¡representations¡¡of¡¡a

determinate¡¡space¡¡or¡¡time¡¡are¡¡generated£»¡¡that¡¡is¡¡to¡¡say£»¡¡through¡¡the

composition¡¡of¡¡the¡¡homogeneous¡¡and¡¡the¡¡consciousness¡¡of¡¡the

synthetical¡¡unity¡¡of¡¡this¡¡manifold¡¡£¨homogeneous£©¡£¡¡Now¡¡the

consciousness¡¡of¡¡a¡¡homogeneous¡¡manifold¡¡in¡¡intuition£»¡¡in¡¡so¡¡far¡¡as

thereby¡¡the¡¡representation¡¡of¡¡an¡¡object¡¡is¡¡rendered¡¡possible£»¡¡is¡¡the

conception¡¡of¡¡a¡¡quantity¡¡£¨quanti£©¡£¡¡Consequently£»¡¡even¡¡the¡¡perception

of¡¡an¡¡object¡¡as¡¡phenomenon¡¡is¡¡possible¡¡only¡¡through¡¡the¡¡same

synthetical¡¡unity¡¡of¡¡the¡¡manifold¡¡of¡¡the¡¡given¡¡sensuous¡¡intuition£»

through¡¡which¡¡the¡¡unity¡¡of¡¡the¡¡composition¡¡of¡¡the¡¡homogeneous¡¡manifold

in¡¡the¡¡conception¡¡of¡¡a¡¡quantity¡¡is¡¡cogitated£»¡¡that¡¡is¡¡to¡¡say£»¡¡all

phenomena¡¡are¡¡quantities£»¡¡and¡¡extensive¡¡quantities£»¡¡because¡¡as

intuitions¡¡in¡¡space¡¡or¡¡time¡¡they¡¡must¡¡be¡¡represented¡¡by¡¡means¡¡of¡¡the

same¡¡synthesis¡¡through¡¡which¡¡space¡¡and¡¡time¡¡themselves¡¡are¡¡determined¡£

¡¡¡¡An¡¡extensive¡¡quantity¡¡I¡¡call¡¡that¡¡wherein¡¡the¡¡representation¡¡of

the¡¡parts¡¡renders¡¡possible¡¡£¨and¡¡therefore¡¡necessarily¡¡antecedes£©¡¡the

representation¡¡of¡¡the¡¡whole¡£¡¡I¡¡cannot¡¡represent¡¡to¡¡myself¡¡any¡¡line£»

however¡¡small£»¡¡without¡¡drawing¡¡it¡¡in¡¡thought£»¡¡that¡¡is£»¡¡without

generating¡¡from¡¡a¡¡point¡¡all¡¡its¡¡parts¡¡one¡¡after¡¡another£»¡¡and¡¡in¡¡this

way¡¡alone¡¡producing¡¡this¡¡intuition¡£¡¡Precisely¡¡the¡¡same¡¡is¡¡the¡¡case

with¡¡every£»¡¡even¡¡the¡¡smallest£»¡¡portion¡¡of¡¡time¡£¡¡I¡¡cogitate¡¡therein

only¡¡the¡¡successive¡¡progress¡¡from¡¡one¡¡moment¡¡to¡¡another£»¡¡and¡¡hence£»¡¡by

means¡¡of¡¡the¡¡different¡¡portions¡¡of¡¡time¡¡and¡¡the¡¡addition¡¡of¡¡them£»¡¡a

determinate¡¡quantity¡¡of¡¡time¡¡is¡¡produced¡£¡¡As¡¡the¡¡pure¡¡intuition¡¡in¡¡all

phenomena¡¡is¡¡either¡¡time¡¡or¡¡space£»¡¡so¡¡is¡¡every¡¡phenomenon¡¡in¡¡its

character¡¡of¡¡intuition¡¡an¡¡extensive¡¡quantity£»¡¡inasmuch¡¡as¡¡it¡¡can

only¡¡be¡¡cognized¡¡in¡¡our¡¡apprehension¡¡by¡¡successive¡¡synthesis¡¡£¨from

part¡¡to¡¡part£©¡£¡¡All¡¡phenomena¡¡are£»¡¡accordingly£»¡¡to¡¡be¡¡considered¡¡as

aggregates£»¡¡that¡¡is£»¡¡as¡¡a¡¡collection¡¡of¡¡previously¡¡given¡¡parts£»

which¡¡is¡¡not¡¡the¡¡case¡¡with¡¡every¡¡sort¡¡of¡¡quantities£»¡¡but¡¡only¡¡with

those¡¡which¡¡are¡¡represented¡¡and¡¡apprehended¡¡by¡¡us¡¡as¡¡extensive¡£

¡¡¡¡On¡¡this¡¡successive¡¡synthesis¡¡of¡¡the¡¡productive¡¡imagination£»¡¡in¡¡the

generation¡¡of¡¡figures£»¡¡is¡¡founded¡¡the¡¡mathematics¡¡of¡¡extension£»¡¡or

geometry£»¡¡with¡¡its¡¡axioms£»¡¡which¡¡express¡¡the¡¡conditions¡¡of¡¡sensuous

intuition¡¡a¡¡priori£»¡¡under¡¡which¡¡alone¡¡the¡¡schema¡¡of¡¡a¡¡pure

conception¡¡of¡¡external¡¡intuition¡¡can¡¡exist£»¡¡for¡¡example£»¡¡¡¨be¡¡tween¡¡two

points¡¡only¡¡one¡¡straight¡¡line¡¡is¡¡possible£»¡¨¡¡¡¨two¡¡straight¡¡lines¡¡cannot

enclose¡¡a¡¡space£»¡¨¡¡etc¡£¡¡These¡¡are¡¡the¡¡axioms¡¡which¡¡properly¡¡relate¡¡only

to¡¡quantities¡¡£¨quanta£©¡¡as¡¡such¡£

¡¡¡¡But£»¡¡as¡¡regards¡¡the¡¡quantity¡¡of¡¡a¡¡thing¡¡£¨quantitas£©£»¡¡that¡¡is¡¡to¡¡say£»

the¡¡answer¡¡to¡¡the¡¡question£º¡¡¡¨How¡¡large¡¡is¡¡this¡¡or¡¡that¡¡object£¿¡¨

although£»¡¡in¡¡respect¡¡to¡¡this¡¡question£»¡¡we¡¡have¡¡various¡¡propositions

synthetical¡¡and¡¡immediately¡¡certain¡¡£¨indemonstrabilia£©£»¡¡we¡¡have£»¡¡in

the¡¡proper¡¡sense¡¡of¡¡the¡¡term£»¡¡no¡¡axioms¡£¡¡For¡¡example£»¡¡the

propositions£º¡¡¡¨If¡¡equals¡¡be¡¡added¡¡to¡¡equals£»¡¡the¡¡wholes¡¡are¡¡equal¡¨£»

¡¨If¡¡equals¡¡be¡¡taken¡¡from¡¡equals£»¡¡the¡¡remainders¡¡are¡¡equal¡¨£»¡¡are

analytical£»¡¡because¡¡I¡¡am¡¡immediately¡¡conscious¡¡of¡¡the¡¡identity¡¡of

the¡¡production¡¡of¡¡the¡¡one¡¡quantity¡¡with¡¡the¡¡production¡¡of¡¡the¡¡other£»

whereas¡¡axioms¡¡must¡¡be¡¡a¡¡priori¡¡synthetical¡¡propositions¡£¡¡On¡¡the¡¡other

hand£»¡¡the¡¡self¡­evident¡¡propositions¡¡as¡¡to¡¡the¡¡relation¡¡of¡¡numbers£»¡¡are

certainly¡¡synthetical¡¡but¡¡not¡¡universal£»¡¡like¡¡those¡¡of¡¡geometry£»¡¡and

for¡¡this¡¡reason¡¡cannot¡¡be¡¡called¡¡axioms£»¡¡but¡¡numerical¡¡formulae¡£

That¡¡7¡¡£«¡¡5¡¡=¡¡12¡¡is¡¡not¡¡an¡¡analytical¡¡proposition¡£¡¡For¡¡neither¡¡in¡¡the

representation¡¡of¡¡seven£»¡¡nor¡¡of¡¡five£»¡¡nor¡¡of¡¡the¡¡composition¡¡of¡¡the

two¡¡numbers£»¡¡do¡¡I¡¡cogitate¡¡the¡¡number¡¡twelve¡£¡¡£¨Whether¡¡I¡¡cogitate

the¡¡number¡¡in¡¡the¡¡addition¡¡of¡¡both£»¡¡is¡¡not¡¡at¡¡present¡¡the¡¡question£»

for¡¡in¡¡the¡¡case¡¡of¡¡an¡¡analytical¡¡proposition£»¡¡the¡¡only¡¡point¡¡is

whether¡¡I¡¡really¡¡cogitate¡¡the¡¡predicate¡¡in¡¡the¡¡representation¡¡of¡¡the

subject¡££©¡¡But¡¡although¡¡the¡¡proposition¡¡is¡¡synthetical£»¡¡it¡¡is

nevertheless¡¡only¡¡a¡¡singular¡¡proposition¡£¡¡In¡¡so¡¡far¡¡as¡¡regard¡¡is

here¡¡had¡¡merely¡¡to¡¡the¡¡synthesis¡¡of¡¡the¡¡homogeneous¡¡£¨the¡¡units£©£»¡¡it

cannot¡¡take¡¡place¡¡except¡¡in¡¡one¡¡manner£»¡¡although¡¡our¡¡use¡¡of¡¡these

numbers¡¡is¡¡afterwards¡¡general¡£¡¡If¡¡I¡¡say£º¡¡¡¨A¡¡triangle¡¡can¡¡be

constructed¡¡with¡¡three¡¡lines£»¡¡any¡¡two¡¡of¡¡which¡¡taken¡¡together¡¡are

greater¡¡than¡¡the¡¡third£»¡¨¡¡I¡¡exercise¡¡merely¡¡the¡¡pure¡¡function¡¡of¡¡the

productive¡¡imagination£»¡¡which¡¡may¡¡draw¡¡the¡¡lines¡¡longer¡¡or¡¡shorter¡¡and

construct¡¡the¡¡angles¡¡at¡¡its¡¡pleasure¡£¡¡On¡¡the¡¡contrary£»¡¡the¡¡number

seven¡¡is¡¡possible¡¡only¡¡in¡¡one¡¡manner£»¡¡and¡¡so¡¡is¡¡likewise¡¡the¡¡number

twelve£»¡¡which¡¡results¡¡from¡¡the¡¡synthesis¡¡of¡¡seven¡¡and¡¡five¡£¡¡Such

propositions£»

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨0£©

Äã¿ÉÄÜϲ»¶µÄ