the critique of pure reason-µÚ72²¿·Ö
°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·ҳ£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡PROOF¡£
¡¡¡¡Let¡¡it¡¡be¡¡supposed¡¡that¡¡a¡¡composite¡¡thing¡¡£¨as¡¡substance£©¡¡consists¡¡of
simple¡¡parts¡£¡¡Inasmuch¡¡as¡¡all¡¡external¡¡relation£»¡¡consequently¡¡all
composition¡¡of¡¡substances£»¡¡is¡¡possible¡¡only¡¡in¡¡space£»¡¡the¡¡space£»
occupied¡¡by¡¡that¡¡which¡¡is¡¡composite£»¡¡must¡¡consist¡¡of¡¡the¡¡same¡¡number
of¡¡parts¡¡as¡¡is¡¡contained¡¡in¡¡the¡¡composite¡£¡¡But¡¡space¡¡does¡¡not
consist¡¡of¡¡simple¡¡parts£»¡¡but¡¡of¡¡spaces¡£¡¡Therefore£»¡¡every¡¡part¡¡of¡¡the
composite¡¡must¡¡occupy¡¡a¡¡space¡£¡¡But¡¡the¡¡absolutely¡¡primary¡¡parts¡¡of
what¡¡is¡¡composite¡¡are¡¡simple¡£¡¡It¡¡follows¡¡that¡¡what¡¡is¡¡simple
occupies¡¡a¡¡space¡£¡¡Now£»¡¡as¡¡everything¡¡real¡¡that¡¡occupies¡¡a¡¡space£»
contains¡¡a¡¡manifold¡¡the¡¡parts¡¡of¡¡which¡¡are¡¡external¡¡to¡¡each¡¡other£»¡¡and
is¡¡consequently¡¡composite¡¡¡and¡¡a¡¡real¡¡composite£»¡¡not¡¡of¡¡accidents¡¡£¨for
these¡¡cannot¡¡exist¡¡external¡¡to¡¡each¡¡other¡¡apart¡¡from¡¡substance£©£»¡¡but
of¡¡substances¡¡¡it¡¡follows¡¡that¡¡the¡¡simple¡¡must¡¡be¡¡a¡¡substantial
composite£»¡¡which¡¡is¡¡self¡contradictory¡£
¡¡¡¡The¡¡second¡¡proposition¡¡of¡¡the¡¡antithesis¡¡¡that¡¡there¡¡exists¡¡in¡¡the
world¡¡nothing¡¡that¡¡is¡¡simple¡¡¡is¡¡here¡¡equivalent¡¡to¡¡the¡¡following£º¡¡The
existence¡¡of¡¡the¡¡absolutely¡¡simple¡¡cannot¡¡be¡¡demonstrated¡¡from¡¡any
experience¡¡or¡¡perception¡¡either¡¡external¡¡or¡¡internal£»¡¡and¡¡the
absolutely¡¡simple¡¡is¡¡a¡¡mere¡¡idea£»¡¡the¡¡objective¡¡reality¡¡of¡¡which
cannot¡¡be¡¡demonstrated¡¡in¡¡any¡¡possible¡¡experience£»¡¡it¡¡is¡¡consequently£»
in¡¡the¡¡exposition¡¡of¡¡phenomena£»¡¡without¡¡application¡¡and¡¡object¡£¡¡For£»
let¡¡us¡¡take¡¡for¡¡granted¡¡that¡¡an¡¡object¡¡may¡¡be¡¡found¡¡in¡¡experience
for¡¡this¡¡transcendental¡¡idea£»¡¡the¡¡empirical¡¡intuition¡¡of¡¡such¡¡an
object¡¡must¡¡then¡¡be¡¡recognized¡¡to¡¡contain¡¡absolutely¡¡no¡¡manifold
with¡¡its¡¡parts¡¡external¡¡to¡¡each¡¡other£»¡¡and¡¡connected¡¡into¡¡unity¡£
Now£»¡¡as¡¡we¡¡cannot¡¡reason¡¡from¡¡the¡¡non¡consciousness¡¡of¡¡such¡¡a¡¡manifold
to¡¡the¡¡impossibility¡¡of¡¡its¡¡existence¡¡in¡¡the¡¡intuition¡¡of¡¡an¡¡object£»
and¡¡as¡¡the¡¡proof¡¡of¡¡this¡¡impossibility¡¡is¡¡necessary¡¡for¡¡the
establishment¡¡and¡¡proof¡¡of¡¡absolute¡¡simplicity£»¡¡it¡¡follows¡¡that¡¡this
simplicity¡¡cannot¡¡be¡¡inferred¡¡from¡¡any¡¡perception¡¡whatever¡£¡¡As£»
therefore£»¡¡an¡¡absolutely¡¡simple¡¡object¡¡cannot¡¡be¡¡given¡¡in¡¡any
experience£»¡¡and¡¡the¡¡world¡¡of¡¡sense¡¡must¡¡be¡¡considered¡¡as¡¡the¡¡sum¡¡total
of¡¡all¡¡possible¡¡experiences£º¡¡nothing¡¡simple¡¡exists¡¡in¡¡the¡¡world¡£
¡¡¡¡This¡¡second¡¡proposition¡¡in¡¡the¡¡antithesis¡¡has¡¡a¡¡more¡¡extended¡¡aim
than¡¡the¡¡first¡£¡¡The¡¡first¡¡merely¡¡banishes¡¡the¡¡simple¡¡from¡¡the
intuition¡¡of¡¡the¡¡composite£»¡¡while¡¡the¡¡second¡¡drives¡¡it¡¡entirely¡¡out¡¡of
nature¡£¡¡Hence¡¡we¡¡were¡¡unable¡¡to¡¡demonstrate¡¡it¡¡from¡¡the¡¡conception
of¡¡a¡¡given¡¡object¡¡of¡¡external¡¡intuition¡¡£¨of¡¡the¡¡composite£©£»¡¡but¡¡we
were¡¡obliged¡¡to¡¡prove¡¡it¡¡from¡¡the¡¡relation¡¡of¡¡a¡¡given¡¡object¡¡to¡¡a
possible¡¡experience¡¡in¡¡general¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡OBSERVATIONS¡¡ON¡¡THE¡¡SECOND¡¡ANTINOMY¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡THESIS¡£
¡¡¡¡When¡¡I¡¡speak¡¡of¡¡a¡¡whole£»¡¡which¡¡necessarily¡¡consists¡¡of¡¡simple¡¡parts£»
I¡¡understand¡¡thereby¡¡only¡¡a¡¡substantial¡¡whole£»¡¡as¡¡the¡¡true
composite£»¡¡that¡¡is¡¡to¡¡say£»¡¡I¡¡understand¡¡that¡¡contingent¡¡unity¡¡of¡¡the
manifold¡¡which¡¡is¡¡given¡¡as¡¡perfectly¡¡isolated¡¡£¨at¡¡least¡¡in¡¡thought£©£»
placed¡¡in¡¡reciprocal¡¡connection£»¡¡and¡¡thus¡¡constituted¡¡a¡¡unity¡£¡¡Space
ought¡¡not¡¡to¡¡be¡¡called¡¡a¡¡compositum¡¡but¡¡a¡¡totum£»¡¡for¡¡its¡¡parts¡¡are
possible¡¡in¡¡the¡¡whole£»¡¡and¡¡not¡¡the¡¡whole¡¡by¡¡means¡¡of¡¡the¡¡parts¡£¡¡It
might¡¡perhaps¡¡be¡¡called¡¡a¡¡compositum¡¡ideale£»¡¡but¡¡not¡¡a¡¡compositum
reale¡£¡¡But¡¡this¡¡is¡¡of¡¡no¡¡importance¡£¡¡As¡¡space¡¡is¡¡not¡¡a¡¡composite¡¡of
substances¡¡£¨and¡¡not¡¡even¡¡of¡¡real¡¡accidents£©£»¡¡if¡¡I¡¡abstract¡¡all
composition¡¡therein¡¡¡nothing£»¡¡not¡¡even¡¡a¡¡point£»¡¡remains£»¡¡for¡¡a¡¡point
is¡¡possible¡¡only¡¡as¡¡the¡¡limit¡¡of¡¡a¡¡space¡¡¡consequently¡¡of¡¡a¡¡composite¡£
Space¡¡and¡¡time£»¡¡therefore£»¡¡do¡¡not¡¡consist¡¡of¡¡simple¡¡parts¡£¡¡That
which¡¡belongs¡¡only¡¡to¡¡the¡¡condition¡¡or¡¡state¡¡of¡¡a¡¡substance£»¡¡even
although¡¡it¡¡possesses¡¡a¡¡quantity¡¡£¨motion¡¡or¡¡change£»¡¡for¡¡example£©£»
likewise¡¡does¡¡not¡¡consist¡¡of¡¡simple¡¡parts¡£¡¡That¡¡is¡¡to¡¡say£»¡¡a¡¡certain
degree¡¡of¡¡change¡¡does¡¡not¡¡originate¡¡from¡¡the¡¡addition¡¡of¡¡many¡¡simple
changes¡£¡¡Our¡¡inference¡¡of¡¡the¡¡simple¡¡from¡¡the¡¡composite¡¡is¡¡valid
only¡¡of¡¡self¡subsisting¡¡things¡£¡¡But¡¡the¡¡accidents¡¡of¡¡a¡¡state¡¡are¡¡not
self¡subsistent¡£¡¡The¡¡proof£»¡¡then£»¡¡for¡¡the¡¡necessity¡¡of¡¡the¡¡simple£»
as¡¡the¡¡component¡¡part¡¡of¡¡all¡¡that¡¡is¡¡substantial¡¡and¡¡composite£»¡¡may
prove¡¡a¡¡failure£»¡¡and¡¡the¡¡whole¡¡case¡¡of¡¡this¡¡thesis¡¡be¡¡lost£»¡¡if¡¡we
carry¡¡the¡¡proposition¡¡too¡¡far£»¡¡and¡¡wish¡¡to¡¡make¡¡it¡¡valid¡¡of¡¡everything
that¡¡is¡¡composite¡¡without¡¡distinction¡¡¡as¡¡indeed¡¡has¡¡really¡¡now¡¡and
then¡¡happened¡£¡¡Besides£»¡¡I¡¡am¡¡here¡¡speaking¡¡only¡¡of¡¡the¡¡simple£»¡¡in¡¡so
far¡¡as¡¡it¡¡is¡¡necessarily¡¡given¡¡in¡¡the¡¡composite¡¡¡the¡¡latter¡¡being
capable¡¡of¡¡solution¡¡into¡¡the¡¡former¡¡as¡¡its¡¡component¡¡parts¡£¡¡The¡¡proper
signification¡¡of¡¡the¡¡word¡¡monas¡¡£¨as¡¡employed¡¡by¡¡Leibnitz£©¡¡ought¡¡to
relate¡¡to¡¡the¡¡simple£»¡¡given¡¡immediately¡¡as¡¡simple¡¡substance¡¡£¨for
example£»¡¡in¡¡consciousness£©£»¡¡and¡¡not¡¡as¡¡an¡¡element¡¡of¡¡the¡¡composite¡£¡¡As
an¡¡clement£»¡¡the¡¡term¡¡atomus¡¡would¡¡be¡¡more¡¡appropriate¡£¡¡And¡¡as¡¡I¡¡wish
to¡¡prove¡¡the¡¡existence¡¡of¡¡simple¡¡substances£»¡¡only¡¡in¡¡relation¡¡to£»
and¡¡as¡¡the¡¡elements¡¡of£»¡¡the¡¡composite£»¡¡I¡¡might¡¡term¡¡the¡¡antithesis
of¡¡the¡¡second¡¡Antinomy£»¡¡transcendental¡¡Atomistic¡£¡¡But¡¡as¡¡this¡¡word¡¡has
long¡¡been¡¡employed¡¡to¡¡designate¡¡a¡¡particular¡¡theory¡¡of¡¡corporeal
phenomena¡¡£¨moleculae£©£»¡¡and¡¡thus¡¡presupposes¡¡a¡¡basis¡¡of¡¡empirical
conceptions£»¡¡I¡¡prefer¡¡calling¡¡it¡¡the¡¡dialectical¡¡principle¡¡of
Monadology¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ANTITHESIS¡£
¡¡¡¡Against¡¡the¡¡assertion¡¡of¡¡the¡¡infinite¡¡subdivisibility¡¡of¡¡matter
whose¡¡ground¡¡of¡¡proof¡¡is¡¡purely¡¡mathematical£»¡¡objections¡¡have¡¡been
alleged¡¡by¡¡the¡¡Monadists¡£¡¡These¡¡objections¡¡lay¡¡themselves¡¡open£»¡¡at
first¡¡sight£»¡¡to¡¡suspicion£»¡¡from¡¡the¡¡fact¡¡that¡¡they¡¡do¡¡not¡¡recognize
the¡¡clearest¡¡mathematical¡¡proofs¡¡as¡¡propositions¡¡relating¡¡to¡¡the
constitution¡¡of¡¡space£»¡¡in¡¡so¡¡far¡¡as¡¡it¡¡is¡¡really¡¡the¡¡formal
condition¡¡of¡¡the¡¡possibility¡¡of¡¡all¡¡matter£»¡¡but¡¡regard¡¡them¡¡merely
as¡¡inferences¡¡from¡¡abstract¡¡but¡¡arbitrary¡¡conceptions£»¡¡which¡¡cannot
have¡¡any¡¡application¡¡to¡¡real¡¡things¡£¡¡just¡¡as¡¡if¡¡it¡¡were¡¡possible¡¡to
imagine¡¡another¡¡mode¡¡of¡¡intuition¡¡than¡¡that¡¡given¡¡in¡¡the¡¡primitive
intuition¡¡of¡¡space£»¡¡and¡¡just¡¡as¡¡if¡¡its¡¡a¡¡priori¡¡determinations¡¡did¡¡not
apply¡¡to¡¡everything£»¡¡the¡¡existence¡¡of¡¡which¡¡is¡¡possible£»¡¡from¡¡the¡¡fact
alone¡¡of¡¡its¡¡filling¡¡space¡£¡¡If¡¡we¡¡listen¡¡to¡¡them£»¡¡we¡¡shall¡¡find
ourselves¡¡required¡¡to¡¡cogitate£»¡¡in¡¡addition¡¡to¡¡the¡¡mathematical¡¡point£»
which¡¡is¡¡simple¡¡¡not£»¡¡however£»¡¡a¡¡part£»¡¡but¡¡a¡¡mere¡¡limit¡¡of¡¡space¡
physical¡¡points£»¡¡which¡¡are¡¡indeed¡¡likewise¡¡simple£»¡¡but¡¡possess¡¡the
peculiar¡¡property£»¡¡as¡¡parts¡¡of¡¡space£»¡¡of¡¡filling¡¡it¡¡merely¡¡by¡¡their
aggregation¡£¡¡I¡¡shall¡¡not¡¡repeat¡¡here¡¡the¡¡common¡¡and¡¡clear
refutations¡¡of¡¡this¡¡absurdity£»¡¡which¡¡are¡¡to¡¡be¡¡found¡¡everywhere¡¡in
numbers£º¡¡every¡¡one¡¡knows¡¡that¡¡it¡¡is¡¡impossible¡¡to¡¡undermine¡¡the
evidence¡¡of¡¡mathematics¡¡by¡¡mere¡¡discursive¡¡conceptions£»¡¡I¡¡shall¡¡only
remark¡¡that£»¡¡if¡¡in¡¡this¡¡case¡¡philosophy¡¡endeavours¡¡to¡¡gain¡¡an
advantage¡¡over¡¡mathematics¡¡by¡¡sophistical¡¡artifices£»¡¡it¡¡is¡¡because
it¡¡forgets¡¡that¡¡the¡¡discussion¡¡relates¡¡solely¡¡to¡¡Phenomena¡¡and¡¡their
conditions¡£¡¡It¡¡is¡¡not¡¡sufficient¡¡to¡¡find¡¡the¡¡conception¡¡of¡¡the
simple¡¡for¡¡the¡¡pure¡¡conception¡¡of¡¡the¡¡composite£»¡¡but¡¡we¡¡must
discover¡¡for¡¡the¡¡intuition¡¡of¡¡the¡¡composite¡¡£¨matter£©£»¡¡the¡¡intuition¡¡of
the¡¡simple¡£¡¡Now¡¡this£»¡¡according¡¡to¡¡the¡¡laws¡¡of¡¡sensibility£»¡¡and
consequently¡¡in¡¡the¡¡case¡¡of¡¡objects¡¡of¡¡sense£»¡¡is¡¡utterly¡¡impossible¡£
In¡¡the¡¡case¡¡of¡¡a¡¡whole¡¡composed¡¡of¡¡substances£»¡¡which¡¡is¡¡cogitated
solely¡¡by¡¡the¡¡pure¡¡understanding£»¡¡it¡¡may¡¡be¡¡necessary¡¡to¡¡be¡¡in
possession¡¡of¡¡the¡¡simple¡¡before¡¡composition¡¡is¡¡possible¡£¡¡But¡¡this¡¡does
not¡¡hold¡¡good¡¡of¡¡the¡¡Totum¡¡substantiale¡¡phaenomenon£»¡¡which£»¡¡as¡¡an
empirical¡¡intuition¡¡in¡¡space£»¡¡possesses¡¡the¡¡necessary¡¡property¡¡of
containing¡¡no¡¡simple¡¡part£»¡¡for¡¡the¡¡very¡¡reason¡¡that¡¡no¡¡part¡¡of¡¡space
is¡¡simple¡£¡¡Meanwhile£»¡¡the¡¡Monadists¡¡have¡¡been¡¡subtle¡¡enough¡¡to
escape¡¡from¡¡this¡¡difficulty£»¡¡by¡¡presupposing¡¡intuition¡¡and¡¡the
dynamical¡¡relation¡¡of¡¡substances¡¡as¡¡the¡¡condition¡¡of¡¡the¡¡possibility
of¡¡space£»¡¡instead¡¡of¡¡regarding¡¡space¡¡as¡¡the¡¡condition¡¡of¡¡the
possibility¡¡of¡¡the¡¡objects¡¡of¡¡external¡¡intuition£»¡¡that¡¡is£»¡¡of
bodies¡£¡¡Now¡¡we¡¡have¡¡a¡¡conception¡¡of¡¡bodies¡¡only¡¡as¡¡phenomena£»¡¡and£»
as¡¡such£»¡¡they¡¡necessarily¡¡presuppose¡¡space¡¡as¡¡the¡¡condition¡¡of¡¡all
external¡¡phenomena¡£¡¡The¡¡evasion¡¡is¡¡therefore¡¡in¡¡vain£»¡¡as£»¡¡indeed£»¡¡we
have¡¡sufficiently¡¡shown¡¡in¡¡our¡¡Aesthetic¡£¡¡If¡¡bodies¡¡were¡¡things¡¡in
themselves£»¡¡the¡¡proof¡¡of¡¡the¡¡Monadists¡¡would¡¡be¡¡unexceptionable¡£
¡¡¡¡The¡¡second¡¡dialectical¡¡assertion¡¡possesses¡¡the¡¡peculiarity¡¡of¡¡having
opposed¡¡to¡¡it¡¡a¡¡dogmatical¡¡proposition£»¡¡which£»¡¡among¡¡all¡¡such
sophistical¡¡statements£»¡¡is¡¡the¡¡only¡¡one¡¡that¡¡undertakes¡¡to¡¡prove¡¡in
the¡¡case¡¡of¡¡an¡¡object¡¡of¡¡experience£»¡¡that¡¡which¡¡is¡¡properly¡¡a
transcendental¡¡idea¡¡¡the¡¡absolute¡¡simplicity¡¡of¡¡substance¡£¡¡The
proposition¡¡is¡¡that¡¡the¡¡object¡¡of¡¡the¡¡internal¡¡sense£»¡¡the¡¡thinking
Ego£»¡¡is¡¡an¡¡absolute¡¡simple¡¡substance¡£¡¡Without¡¡at¡¡present¡¡entering¡¡upon
this¡¡subject¡¡¡as¡¡it¡¡has¡¡been¡¡considered¡¡at¡¡length¡¡in¡¡a¡¡former¡¡chapter¡
I¡¡shall¡¡merely¡¡remark¡¡that£»¡¡if¡¡something¡¡is¡¡cogitated¡¡merely¡¡as¡¡an
object£»¡¡without¡¡the¡¡addition¡¡of¡¡any¡¡synthetical¡¡determination¡¡of¡¡its
intuition¡¡¡as¡¡happens¡¡in¡¡the¡¡case¡¡of¡¡the¡¡bare¡¡representation£»¡¡I¡¡¡it¡¡is
certain¡¡that¡¡no¡¡manifold¡¡and¡¡no¡¡composition¡¡can¡¡be¡¡perceived¡¡in¡¡such¡¡a
representation¡£¡¡As£»¡¡moreover£»¡¡the¡¡predicates¡¡whereby¡¡I¡¡cogitate¡¡this
object¡¡are¡¡merely¡¡intuitions¡¡of¡¡the¡¡internal¡¡sense£»¡¡there¡¡cannot¡¡be
discovered¡¡in¡¡them¡¡anything¡¡to¡¡prove¡¡the¡¡existence¡¡of¡¡a¡¡manifold¡¡whose
parts¡¡are¡¡external¡¡to¡¡each¡¡other£»¡¡and£»¡¡consequently£»¡¡nothing¡¡to
prove¡¡the¡¡existence¡¡of¡¡real¡¡composition¡£¡¡Consciousness£»¡¡therefore£»
is¡¡so¡¡constituted¡¡that£»¡¡inasmuch¡¡as¡¡the¡¡thinking¡¡subject¡¡is¡¡at¡¡the
same¡¡time¡¡its¡¡own¡¡object£»¡¡it¡¡cannot¡¡divide¡¡itself¡¡¡although¡¡it¡¡can
divide¡¡its¡¡inhering¡¡determinations¡£¡¡For¡¡every¡¡object¡¡in¡¡relation¡¡to
itself¡¡is¡¡absolute¡¡unity¡£¡¡Nevertheless£»¡¡if¡¡the¡¡subject¡¡is¡¡regarded
externally£»¡¡as¡¡an¡¡object¡¡of¡¡intuition£»¡¡it¡¡must£»¡¡in¡¡its¡¡character¡¡of
phenomenon£»¡¡possess¡¡the¡¡property¡¡of¡¡composition¡£¡¡And¡¡it¡¡must¡¡always¡¡be
regarded¡¡in¡¡this¡¡manner£»¡¡if¡¡we¡¡wish¡¡to¡¡know¡¡whether¡¡the