the critique of pure reason-µÚ84²¿·Ö
°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·ҳ£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡
conditioned¡¡to¡¡the¡¡conditions¡¡not¡¡given¡¡contemporaneously¡¡and¡¡along
with¡¡it£»¡¡but¡¡discoverable¡¡only¡¡through¡¡the¡¡empirical¡¡regress¡£¡¡We¡¡are
not£»¡¡however£»¡¡entitled¡¡to¡¡affirm¡¡of¡¡a¡¡whole¡¡of¡¡this¡¡kind£»¡¡which¡¡is
divisible¡¡in¡¡infinitum£»¡¡that¡¡it¡¡consists¡¡of¡¡an¡¡infinite¡¡number¡¡of
parts¡£¡¡For£»¡¡although¡¡all¡¡the¡¡parts¡¡are¡¡contained¡¡in¡¡the¡¡intuition¡¡of
the¡¡whole£»¡¡the¡¡whole¡¡division¡¡is¡¡not¡¡contained¡¡therein¡£¡¡The¡¡division
is¡¡contained¡¡only¡¡in¡¡the¡¡progressing¡¡decomposition¡¡¡in¡¡the¡¡regress
itself£»¡¡which¡¡is¡¡the¡¡condition¡¡of¡¡the¡¡possibility¡¡and¡¡actuality¡¡of¡¡the
series¡£¡¡Now£»¡¡as¡¡this¡¡regress¡¡is¡¡infinite£»¡¡all¡¡the¡¡members¡¡£¨parts£©¡¡to
which¡¡it¡¡attains¡¡must¡¡be¡¡contained¡¡in¡¡the¡¡given¡¡whole¡¡as¡¡an¡¡aggregate¡£
But¡¡the¡¡complete¡¡series¡¡of¡¡division¡¡is¡¡not¡¡contained¡¡therein¡£¡¡For¡¡this
series£»¡¡being¡¡infinite¡¡in¡¡succession¡¡and¡¡always¡¡incomplete£»¡¡cannot
represent¡¡an¡¡infinite¡¡number¡¡of¡¡members£»¡¡and¡¡still¡¡less¡¡a
composition¡¡of¡¡these¡¡members¡¡into¡¡a¡¡whole¡£
¡¡¡¡To¡¡apply¡¡this¡¡remark¡¡to¡¡space¡£¡¡Every¡¡limited¡¡part¡¡of¡¡space¡¡presented
to¡¡intuition¡¡is¡¡a¡¡whole£»¡¡the¡¡parts¡¡of¡¡which¡¡are¡¡always¡¡spaces¡¡¡to
whatever¡¡extent¡¡subdivided¡£¡¡Every¡¡limited¡¡space¡¡is¡¡hence¡¡divisible
to¡¡infinity¡£
¡¡¡¡Let¡¡us¡¡again¡¡apply¡¡the¡¡remark¡¡to¡¡an¡¡external¡¡phenomenon¡¡enclosed
in¡¡limits£»¡¡that¡¡is£»¡¡a¡¡body¡£¡¡The¡¡divisibility¡¡of¡¡a¡¡body¡¡rests¡¡upon
the¡¡divisibility¡¡of¡¡space£»¡¡which¡¡is¡¡the¡¡condition¡¡of¡¡the¡¡possibility
of¡¡the¡¡body¡¡as¡¡an¡¡extended¡¡whole¡£¡¡A¡¡body¡¡is¡¡consequently¡¡divisible
to¡¡infinity£»¡¡though¡¡it¡¡does¡¡not£»¡¡for¡¡that¡¡reason£»¡¡consist¡¡of¡¡an
infinite¡¡number¡¡of¡¡parts¡£
¡¡¡¡It¡¡certainly¡¡seems¡¡that£»¡¡as¡¡a¡¡body¡¡must¡¡be¡¡cogitated¡¡as¡¡substance¡¡in
space£»¡¡the¡¡law¡¡of¡¡divisibility¡¡would¡¡not¡¡be¡¡applicable¡¡to¡¡it¡¡as
substance¡£¡¡For¡¡we¡¡may¡¡and¡¡ought¡¡to¡¡grant£»¡¡in¡¡the¡¡case¡¡of¡¡space£»¡¡that
division¡¡or¡¡decomposition£»¡¡to¡¡any¡¡extent£»¡¡never¡¡can¡¡utterly¡¡annihilate
composition¡¡£¨that¡¡is¡¡to¡¡say£»¡¡the¡¡smallest¡¡part¡¡of¡¡space¡¡must¡¡still
consist¡¡of¡¡spaces£©£»¡¡otherwise¡¡space¡¡would¡¡entirely¡¡cease¡¡to¡¡exist¡
which¡¡is¡¡impossible¡£¡¡But£»¡¡the¡¡assertion¡¡on¡¡the¡¡other¡¡band¡¡that¡¡when
all¡¡composition¡¡in¡¡matter¡¡is¡¡annihilated¡¡in¡¡thought£»¡¡nothing
remains£»¡¡does¡¡not¡¡seem¡¡to¡¡harmonize¡¡with¡¡the¡¡conception¡¡of
substance£»¡¡which¡¡must¡¡be¡¡properly¡¡the¡¡subject¡¡of¡¡all¡¡composition¡¡and
must¡¡remain£»¡¡even¡¡after¡¡the¡¡conjunction¡¡of¡¡its¡¡attributes¡¡in¡¡space¡
which¡¡constituted¡¡a¡¡body¡¡¡is¡¡annihilated¡¡in¡¡thought¡£¡¡But¡¡this¡¡is¡¡not
the¡¡case¡¡with¡¡substance¡¡in¡¡the¡¡phenomenal¡¡world£»¡¡which¡¡is¡¡not¡¡a
thing¡¡in¡¡itself¡¡cogitated¡¡by¡¡the¡¡pure¡¡category¡£¡¡Phenomenal¡¡substance
is¡¡not¡¡an¡¡absolute¡¡subject£»¡¡it¡¡is¡¡merely¡¡a¡¡permanent¡¡sensuous¡¡image£»
and¡¡nothing¡¡more¡¡than¡¡an¡¡intuition£»¡¡in¡¡which¡¡the¡¡unconditioned¡¡is
not¡¡to¡¡be¡¡found¡£
¡¡¡¡But£»¡¡although¡¡this¡¡rule¡¡of¡¡progress¡¡to¡¡infinity¡¡is¡¡legitimate¡¡and
applicable¡¡to¡¡the¡¡subdivision¡¡of¡¡a¡¡phenomenon£»¡¡as¡¡a¡¡mere¡¡occupation¡¡or
filling¡¡of¡¡space£»¡¡it¡¡is¡¡not¡¡applicable¡¡to¡¡a¡¡whole¡¡consisting¡¡of¡¡a
number¡¡of¡¡distinct¡¡parts¡¡and¡¡constituting¡¡a¡¡quantum¡¡discretum¡¡¡that¡¡is
to¡¡say£»¡¡an¡¡organized¡¡body¡£¡¡It¡¡cannot¡¡be¡¡admitted¡¡that¡¡every¡¡part¡¡in¡¡an
organized¡¡whole¡¡is¡¡itself¡¡organized£»¡¡and¡¡that£»¡¡in¡¡analysing¡¡it¡¡to
infinity£»¡¡we¡¡must¡¡always¡¡meet¡¡with¡¡organized¡¡parts£»¡¡although¡¡we¡¡may
allow¡¡that¡¡the¡¡parts¡¡of¡¡the¡¡matter¡¡which¡¡we¡¡decompose¡¡in¡¡infinitum£»
may¡¡be¡¡organized¡£¡¡For¡¡the¡¡infinity¡¡of¡¡the¡¡division¡¡of¡¡a¡¡phenomenon
in¡¡space¡¡rests¡¡altogether¡¡on¡¡the¡¡fact¡¡that¡¡the¡¡divisibility¡¡of¡¡a
phenomenon¡¡is¡¡given¡¡only¡¡in¡¡and¡¡through¡¡this¡¡infinity£»¡¡that¡¡is£»¡¡an
undetermined¡¡number¡¡of¡¡parts¡¡is¡¡given£»¡¡while¡¡the¡¡parts¡¡themselves
are¡¡given¡¡and¡¡determined¡¡only¡¡in¡¡and¡¡through¡¡the¡¡subdivision£»¡¡in¡¡a
word£»¡¡the¡¡infinity¡¡of¡¡the¡¡division¡¡necessarily¡¡presupposes¡¡that¡¡the
whole¡¡is¡¡not¡¡already¡¡divided¡¡in¡¡se¡£¡¡Hence¡¡our¡¡division¡¡determines¡¡a
number¡¡of¡¡parts¡¡in¡¡the¡¡whole¡¡¡a¡¡number¡¡which¡¡extends¡¡just¡¡as¡¡far¡¡as
the¡¡actual¡¡regress¡¡in¡¡the¡¡division£»¡¡while£»¡¡on¡¡the¡¡other¡¡hand£»¡¡the¡¡very
notion¡¡of¡¡a¡¡body¡¡organized¡¡to¡¡infinity¡¡represents¡¡the¡¡whole¡¡as¡¡already
and¡¡in¡¡itself¡¡divided¡£¡¡We¡¡expect£»¡¡therefore£»¡¡to¡¡find¡¡in¡¡it¡¡a
determinate£»¡¡but¡¡at¡¡the¡¡same¡¡time£»¡¡infinite£»¡¡number¡¡of¡¡parts¡¡¡which¡¡is
self¡contradictory¡£¡¡For¡¡we¡¡should¡¡thus¡¡have¡¡a¡¡whole¡¡containing¡¡a
series¡¡of¡¡members¡¡which¡¡could¡¡not¡¡be¡¡completed¡¡in¡¡any¡¡regress¡¡¡which
is¡¡infinite£»¡¡and¡¡at¡¡the¡¡same¡¡time¡¡complete¡¡in¡¡an¡¡organized
composite¡£¡¡Infinite¡¡divisibility¡¡is¡¡applicable¡¡only¡¡to¡¡a¡¡quantum
continuum£»¡¡and¡¡is¡¡based¡¡entirely¡¡on¡¡the¡¡infinite¡¡divisibility¡¡of
space£»¡¡But¡¡in¡¡a¡¡quantum¡¡discretum¡¡the¡¡multitude¡¡of¡¡parts¡¡or¡¡units¡¡is
always¡¡determined£»¡¡and¡¡hence¡¡always¡¡equal¡¡to¡¡some¡¡number¡£¡¡To¡¡what
extent¡¡a¡¡body¡¡may¡¡be¡¡organized£»¡¡experience¡¡alone¡¡can¡¡inform¡¡us£»¡¡and
although£»¡¡so¡¡far¡¡as¡¡our¡¡experience¡¡of¡¡this¡¡or¡¡that¡¡body¡¡has
extended£»¡¡we¡¡may¡¡not¡¡have¡¡discovered¡¡any¡¡inorganic¡¡part£»¡¡such¡¡parts
must¡¡exist¡¡in¡¡possible¡¡experience¡£¡¡But¡¡how¡¡far¡¡the¡¡transcendental
division¡¡of¡¡a¡¡phenomenon¡¡must¡¡extend£»¡¡we¡¡cannot¡¡know¡¡from
experience¡¡¡it¡¡is¡¡a¡¡question¡¡which¡¡experience¡¡cannot¡¡answer£»¡¡it¡¡is
answered¡¡only¡¡by¡¡the¡¡principle¡¡of¡¡reason¡¡which¡¡forbids¡¡us¡¡to
consider¡¡the¡¡empirical¡¡regress£»¡¡in¡¡the¡¡analysis¡¡of¡¡extended¡¡body£»¡¡as
ever¡¡absolutely¡¡complete¡£
¡¡¡¡¡¡¡¡¡¡Concluding¡¡Remark¡¡on¡¡the¡¡Solution¡¡of¡¡the¡¡Transcendental
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Mathematical¡¡Ideas¡¡¡and¡¡Introductory¡¡to¡¡the
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Solution¡¡of¡¡the¡¡Dynamical¡¡Ideas¡£
¡¡¡¡We¡¡presented¡¡the¡¡antinomy¡¡of¡¡pure¡¡reason¡¡in¡¡a¡¡tabular¡¡form£»¡¡and¡¡we
endeavoured¡¡to¡¡show¡¡the¡¡ground¡¡of¡¡this¡¡self¡contradiction¡¡on¡¡the
part¡¡of¡¡reason£»¡¡and¡¡the¡¡only¡¡means¡¡of¡¡bringing¡¡it¡¡to¡¡a¡¡conclusion¡
znamely£»¡¡by¡¡declaring¡¡both¡¡contradictory¡¡statements¡¡to¡¡be¡¡false¡£¡¡We
represented¡¡in¡¡these¡¡antinomies¡¡the¡¡conditions¡¡of¡¡phenomena¡¡as
belonging¡¡to¡¡the¡¡conditioned¡¡according¡¡to¡¡relations¡¡of¡¡space¡¡and¡¡time¡
which¡¡is¡¡the¡¡usual¡¡supposition¡¡of¡¡the¡¡common¡¡understanding¡£¡¡In¡¡this
respect£»¡¡all¡¡dialectical¡¡representations¡¡of¡¡totality£»¡¡in¡¡the¡¡series¡¡of
conditions¡¡to¡¡a¡¡given¡¡conditioned£»¡¡were¡¡perfectly¡¡homogeneous¡£¡¡The
condition¡¡was¡¡always¡¡a¡¡member¡¡of¡¡the¡¡series¡¡along¡¡with¡¡the
conditioned£»¡¡and¡¡thus¡¡the¡¡homogeneity¡¡of¡¡the¡¡whole¡¡series¡¡was¡¡assured¡£
In¡¡this¡¡case¡¡the¡¡regress¡¡could¡¡never¡¡be¡¡cogitated¡¡as¡¡complete£»¡¡or£»
if¡¡this¡¡was¡¡the¡¡case£»¡¡a¡¡member¡¡really¡¡conditioned¡¡was¡¡falsely¡¡regarded
as¡¡a¡¡primal¡¡member£»¡¡consequently¡¡as¡¡unconditioned¡£¡¡In¡¡such¡¡an
antinomy£»¡¡therefore£»¡¡we¡¡did¡¡not¡¡consider¡¡the¡¡object£»¡¡that¡¡is£»¡¡the
conditioned£»¡¡but¡¡the¡¡series¡¡of¡¡conditions¡¡belonging¡¡to¡¡the¡¡object£»¡¡and
the¡¡magnitude¡¡of¡¡that¡¡series¡£¡¡And¡¡thus¡¡arose¡¡the¡¡difficulty¡¡¡a
difficulty¡¡not¡¡to¡¡be¡¡settled¡¡by¡¡any¡¡decision¡¡regarding¡¡the¡¡claims¡¡of
the¡¡two¡¡parties£»¡¡but¡¡simply¡¡by¡¡cutting¡¡the¡¡knot¡¡¡by¡¡declaring¡¡the
series¡¡proposed¡¡by¡¡reason¡¡to¡¡be¡¡either¡¡too¡¡long¡¡or¡¡too¡¡short¡¡for¡¡the
understanding£»¡¡which¡¡could¡¡in¡¡neither¡¡case¡¡make¡¡its¡¡conceptions
adequate¡¡with¡¡the¡¡ideas¡£
¡¡¡¡But¡¡we¡¡have¡¡overlooked£»¡¡up¡¡to¡¡this¡¡point£»¡¡an¡¡essential¡¡difference
existing¡¡between¡¡the¡¡conceptions¡¡of¡¡the¡¡understanding¡¡which¡¡reason
endeavours¡¡to¡¡raise¡¡to¡¡the¡¡rank¡¡of¡¡ideas¡¡¡two¡¡of¡¡these¡¡indicating¡¡a
mathematical£»¡¡and¡¡two¡¡a¡¡dynamical¡¡synthesis¡¡of¡¡phenomena¡£¡¡Hitherto£»¡¡it
was¡¡necessary¡¡to¡¡signalize¡¡this¡¡distinction£»¡¡for£»¡¡just¡¡as¡¡in¡¡our
general¡¡representation¡¡of¡¡all¡¡transcendental¡¡ideas£»¡¡we¡¡considered¡¡them
under¡¡phenomenal¡¡conditions£»¡¡so£»¡¡in¡¡the¡¡two¡¡mathematical¡¡ideas£»¡¡our
discussion¡¡is¡¡concerned¡¡solely¡¡with¡¡an¡¡object¡¡in¡¡the¡¡world¡¡of
phenomena¡£¡¡But¡¡as¡¡we¡¡are¡¡now¡¡about¡¡to¡¡proceed¡¡to¡¡the¡¡consideration
of¡¡the¡¡dynamical¡¡conceptions¡¡of¡¡the¡¡understanding£»¡¡and¡¡their
adequateness¡¡with¡¡ideas£»¡¡we¡¡must¡¡not¡¡lose¡¡sight¡¡of¡¡this¡¡distinction¡£
We¡¡shall¡¡find¡¡that¡¡it¡¡opens¡¡up¡¡to¡¡us¡¡an¡¡entirely¡¡new¡¡view¡¡of¡¡the
conflict¡¡in¡¡which¡¡reason¡¡is¡¡involved¡£¡¡For£»¡¡while¡¡in¡¡the¡¡first¡¡two
antinomies£»¡¡both¡¡parties¡¡were¡¡dismissed£»¡¡on¡¡the¡¡ground¡¡of¡¡having
advanced¡¡statements¡¡based¡¡upon¡¡false¡¡hypothesis£»¡¡in¡¡the¡¡present¡¡case
the¡¡hope¡¡appears¡¡of¡¡discovering¡¡a¡¡hypothesis¡¡which¡¡may¡¡be¡¡consistent
with¡¡the¡¡demands¡¡of¡¡reason£»¡¡and£»¡¡the¡¡judge¡¡completing¡¡the¡¡statement¡¡of
the¡¡grounds¡¡of¡¡claim£»¡¡which¡¡both¡¡parties¡¡had¡¡left¡¡in¡¡an¡¡unsatisfactory
state£»¡¡the¡¡question¡¡may¡¡be¡¡settled¡¡on¡¡its¡¡own¡¡merits£»¡¡not¡¡by
dismissing¡¡the¡¡claimants£»¡¡but¡¡by¡¡a¡¡comparison¡¡of¡¡the¡¡arguments¡¡on¡¡both
sides¡£¡¡If¡¡we¡¡consider¡¡merely¡¡their¡¡extension£»¡¡and¡¡whether¡¡they¡¡are
adequate¡¡with¡¡ideas£»¡¡the¡¡series¡¡of¡¡conditions¡¡may¡¡be¡¡regarded¡¡as¡¡all
homogeneous¡£¡¡But¡¡the¡¡conception¡¡of¡¡the¡¡understanding¡¡which¡¡lies¡¡at¡¡the
basis¡¡of¡¡these¡¡ideas£»¡¡contains¡¡either¡¡a¡¡synthesis¡¡of¡¡the¡¡homogeneous
£¨presupposed¡¡in¡¡every¡¡quantity¡¡¡in¡¡its¡¡composition¡¡as¡¡well¡¡as¡¡in¡¡its
division£©¡¡or¡¡of¡¡the¡¡heterogeneous£»¡¡which¡¡is¡¡the¡¡case¡¡in¡¡the
dynamical¡¡synthesis¡¡of¡¡cause¡¡and¡¡effect£»¡¡as¡¡well¡¡as¡¡of¡¡the¡¡necessary
and¡¡the¡¡contingent¡£
¡¡¡¡Thus¡¡it¡¡happens¡¡that¡¡in¡¡the¡¡mathematical¡¡series¡¡of¡¡phenomena¡¡no
other¡¡than¡¡a¡¡sensuous¡¡condition¡¡is¡¡admissible¡¡¡a¡¡condition¡¡which¡¡is
itself¡¡a¡¡member¡¡of¡¡the¡¡series£»¡¡while¡¡the¡¡dynamical¡¡series¡¡of
sensuous¡¡conditions¡¡admits¡¡a¡¡heterogeneous¡¡condition£»¡¡which¡¡is¡¡not¡¡a
member¡¡of¡¡the¡¡series£»¡¡but£»¡¡as¡¡purely¡¡intelligible£»¡¡lies¡¡out¡¡of¡¡and
beyond¡¡it¡£¡¡And¡¡thus¡¡reason¡¡is¡¡satisfied£»¡¡and¡¡an¡¡unconditioned¡¡placed
at¡¡the¡¡head¡¡of¡¡the¡¡series¡¡of¡¡phenomena£»¡¡without¡¡introducing
confusion¡¡into¡¡or¡¡discontinuing¡¡it£»¡¡contrary¡¡to¡¡the¡¡principles¡¡of
the¡¡understanding¡£
¡¡¡¡Now£»¡¡from¡¡the¡¡fact¡¡that¡¡the¡¡dynamical¡¡ideas¡¡admit¡¡a¡¡condition¡¡of
phenomena¡¡which¡¡does¡¡not¡¡form¡¡a¡¡part¡¡of¡¡the¡¡series¡¡of¡¡phenomena£»
arises¡¡a¡¡result¡¡which¡¡we¡¡should¡¡not¡¡have¡¡expected¡¡from¡¡an¡¡antinomy¡£¡¡In
former¡¡cases£»¡¡the¡¡result¡¡was¡¡that¡¡both¡¡contradictory¡¡dialectical
statements¡¡were¡¡declared¡¡to¡¡be¡¡false¡£¡¡In¡¡the¡¡present¡¡case£»¡¡we¡¡find¡¡the
conditioned¡¡in¡¡the¡¡dynamical¡¡series¡¡connected¡¡with¡¡an¡¡empirically
unconditioned£»¡¡but¡¡non¡sensuous¡¡condition£»¡¡and¡¡thus¡¡satisfaction¡¡is
done¡¡to¡¡the¡¡understanding¡¡on¡¡the¡¡one¡¡hand¡¡and¡¡to¡¡the¡¡reason¡¡on¡¡the
other¡£*¡¡While£»¡¡moreover£»¡¡the¡¡dialectical¡¡arguments¡¡for¡¡unconditioned
totality¡¡in¡¡mere¡¡phenomena¡¡fall¡¡to¡¡the¡¡ground£»¡¡both¡¡propositions¡¡of
reason¡¡may¡¡be¡¡shown¡¡to¡¡be¡¡true¡¡in¡¡their¡¡proper¡¡signification¡£¡¡This
could¡¡not¡¡happen¡¡in¡¡the¡¡case¡¡of¡¡the¡¡cosmological¡¡ideas¡¡which
demanded¡¡a¡¡mathematically¡¡unconditioned¡¡unity£»¡¡for¡¡no¡¡condition
could¡¡be¡¡placed¡¡at¡¡the¡¡head¡¡of¡¡the¡¡series¡¡of¡¡phenomena£»¡¡except¡¡one
which¡¡w