a history of science-2-µÚ38²¿·Ö
°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·ҳ£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡
e¡¡minute¡¡of¡¡time¡¡describe¡¡in¡¡its¡¡fall¡¡15¡¡1/12¡¡Paris¡¡feet¡£¡¡For¡¡the¡¡versed¡¡sine¡¡of¡¡that¡¡arc¡¡which¡¡the¡¡moon£»¡¡in¡¡the¡¡space¡¡of¡¡one¡¡minute¡¡of¡¡time£»¡¡would¡¡by¡¡its¡¡mean¡¡motion¡¡describe¡¡at¡¡the¡¡distance¡¡of¡¡sixty¡¡semi¡diameters¡¡of¡¡the¡¡earth£»¡¡is¡¡nearly¡¡15¡¡1/12¡¡Paris¡¡feet£»¡¡or¡¡more¡¡accurately¡¡15¡¡feet£»¡¡1¡¡inch£»¡¡1¡¡line¡¡4/9¡£¡¡Wherefore£»¡¡since¡¡that¡¡force£»¡¡in¡¡approaching¡¡the¡¡earth£»¡¡increases¡¡in¡¡the¡¡reciprocal¡duplicate¡¡proportion¡¡of¡¡the¡¡distance£»¡¡and¡¡upon¡¡that¡¡account£»¡¡at¡¡the¡¡surface¡¡of¡¡the¡¡earth£»¡¡is¡¡60¡¡x¡¡60¡¡times¡¡greater¡¡than¡¡at¡¡the¡¡moon£»¡¡a¡¡body¡¡in¡¡our¡¡regions£»¡¡falling¡¡with¡¡that¡¡force£»¡¡ought¡¡in¡¡the¡¡space¡¡of¡¡one¡¡minute¡¡of¡¡time¡¡to¡¡describe¡¡60¡¡x¡¡60¡¡x¡¡15¡¡1/12¡¡Paris¡¡feet£»¡¡and¡¡in¡¡the¡¡space¡¡of¡¡one¡¡second¡¡of¡¡time£»¡¡to¡¡describe¡¡15¡¡1/12¡¡of¡¡those¡¡feet£»¡¡or¡¡more¡¡accurately£»¡¡15¡¡feet£»¡¡1¡¡inch£»¡¡1¡¡line¡¡4/9¡£¡¡And¡¡with¡¡this¡¡very¡¡force¡¡we¡¡actually¡¡find¡¡that¡¡bodies¡¡here¡¡upon¡¡earth¡¡do¡¡really¡¡descend£»¡¡for¡¡a¡¡pendulum¡¡oscillating¡¡seconds¡¡in¡¡the¡¡latitude¡¡of¡¡Paris¡¡will¡¡be¡¡3¡¡Paris¡¡feet£»¡¡and¡¡8¡¡lines¡¡1/2¡¡in¡¡length£»¡¡as¡¡Mr¡£¡¡Huygens¡¡has¡¡observed¡£¡¡And¡¡the¡¡space¡¡which¡¡a¡¡heavy¡¡body¡¡describes¡¡by¡¡falling¡¡in¡¡one¡¡second¡¡of¡¡time¡¡is¡¡to¡¡half¡¡the¡¡length¡¡of¡¡the¡¡pendulum¡¡in¡¡the¡¡duplicate¡¡ratio¡¡of¡¡the¡¡circumference¡¡of¡¡a¡¡circle¡¡to¡¡its¡¡diameter¡¡£¨as¡¡Mr¡£¡¡Huygens¡¡has¡¡also¡¡shown£©£»¡¡and¡¡is¡¡therefore¡¡15¡¡Paris¡¡feet£»¡¡1¡¡inch£»¡¡1¡¡line¡¡4/9¡£¡¡And¡¡therefore¡¡the¡¡force¡¡by¡¡which¡¡the¡¡moon¡¡is¡¡retained¡¡in¡¡its¡¡orbit¡¡is¡¡that¡¡very¡¡same¡¡force¡¡which¡¡we¡¡commonly¡¡call¡¡gravity£»¡¡for£»¡¡were¡¡gravity¡¡another¡¡force¡¡different¡¡from¡¡that£»¡¡then¡¡bodies¡¡descending¡¡to¡¡the¡¡earth¡¡with¡¡the¡¡joint¡¡impulse¡¡of¡¡both¡¡forces¡¡would¡¡fall¡¡with¡¡a¡¡double¡¡velocity£»¡¡and¡¡in¡¡the¡¡space¡¡of¡¡one¡¡second¡¡of¡¡time¡¡would¡¡describe¡¡30¡¡1/6¡¡Paris¡¡feet£»¡¡altogether¡¡against¡¡experience¡£¡¨£§1£§¡¡All¡¡this¡¡is¡¡beautifully¡¡clear£»¡¡and¡¡its¡¡validity¡¡has¡¡never¡¡in¡¡recent¡¡generations¡¡been¡¡called¡¡in¡¡question£»¡¡yet¡¡it¡¡should¡¡be¡¡explained¡¡that¡¡the¡¡argument¡¡does¡¡not¡¡amount¡¡to¡¡an¡¡actually¡¡indisputable¡¡demonstration¡£¡¡It¡¡is¡¡at¡¡least¡¡possible¡¡that¡¡the¡¡coincidence¡¡between¡¡the¡¡observed¡¡and¡¡computed¡¡motion¡¡of¡¡the¡¡moon¡¡may¡¡be¡¡a¡¡mere¡¡coincidence¡¡and¡¡nothing¡¡more¡£¡¡This¡¡probability£»¡¡however£»¡¡is¡¡so¡¡remote¡¡that¡¡Newton¡¡is¡¡fully¡¡justified¡¡in¡¡disregarding¡¡it£»¡¡and£»¡¡as¡¡has¡¡been¡¡said£»¡¡all¡¡subsequent¡¡generations¡¡have¡¡accepted¡¡the¡¡computation¡¡as¡¡demonstrative¡£¡¡Let¡¡us¡¡produce¡¡now¡¡Newton's¡¡further¡¡computations¡¡as¡¡to¡¡the¡¡other¡¡planetary¡¡bodies£»¡¡passing¡¡on¡¡to¡¡his¡¡final¡¡conclusion¡¡that¡¡gravity¡¡is¡¡a¡¡universal¡¡force¡£¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¨PROPOSITION¡¡V¡££»¡¡THEOREM¡¡V¡£¡¡¡¨That¡¡the¡¡circumjovial¡¡planets¡¡gravitate¡¡towards¡¡Jupiter£»¡¡the¡¡circumsaturnal¡¡towards¡¡Saturn£»¡¡the¡¡circumsolar¡¡towards¡¡the¡¡sun£»¡¡and¡¡by¡¡the¡¡forces¡¡of¡¡their¡¡gravity¡¡are¡¡drawn¡¡off¡¡from¡¡rectilinear¡¡motions£»¡¡and¡¡retained¡¡in¡¡curvilinear¡¡orbits¡£
¡¨For¡¡the¡¡revolutions¡¡of¡¡the¡¡circumjovial¡¡planets¡¡about¡¡Jupiter£»¡¡of¡¡the¡¡circumsaturnal¡¡about¡¡Saturn£»¡¡and¡¡of¡¡Mercury¡¡and¡¡Venus¡¡and¡¡the¡¡other¡¡circumsolar¡¡planets¡¡about¡¡the¡¡sun£»¡¡are¡¡appearances¡¡of¡¡the¡¡same¡¡sort¡¡with¡¡the¡¡revolution¡¡of¡¡the¡¡moon¡¡about¡¡the¡¡earth£»¡¡and¡¡therefore£»¡¡by¡¡Rule¡¡ii¡££»¡¡must¡¡be¡¡owing¡¡to¡¡the¡¡same¡¡sort¡¡of¡¡causes£»¡¡especially¡¡since¡¡it¡¡has¡¡been¡¡demonstrated¡¡that¡¡the¡¡forces¡¡upon¡¡which¡¡those¡¡revolutions¡¡depend¡¡tend¡¡to¡¡the¡¡centres¡¡of¡¡Jupiter£»¡¡of¡¡Saturn£»¡¡and¡¡of¡¡the¡¡sun£»¡¡and¡¡that¡¡those¡¡forces£»¡¡in¡¡receding¡¡from¡¡Jupiter£»¡¡from¡¡Saturn£»¡¡and¡¡from¡¡the¡¡sun£»¡¡decrease¡¡in¡¡the¡¡same¡¡proportion£»¡¡and¡¡according¡¡to¡¡the¡¡same¡¡law£»¡¡as¡¡the¡¡force¡¡of¡¡gravity¡¡does¡¡in¡¡receding¡¡from¡¡the¡¡earth¡£¡¡¡¨COR¡£¡¡1¡£There¡¡is£»¡¡therefore£»¡¡a¡¡power¡¡of¡¡gravity¡¡tending¡¡to¡¡all¡¡the¡¡planets£»¡¡for¡¡doubtless¡¡Venus£»¡¡Mercury£»¡¡and¡¡the¡¡rest¡¡are¡¡bodies¡¡of¡¡the¡¡same¡¡sort¡¡with¡¡Jupiter¡¡and¡¡Saturn¡£¡¡And¡¡since¡¡all¡¡attraction¡¡£¨by¡¡Law¡¡iii¡££©¡¡is¡¡mutual£»¡¡Jupiter¡¡will¡¡therefore¡¡gravitate¡¡towards¡¡all¡¡his¡¡own¡¡satellites£»¡¡Saturn¡¡towards¡¡his£»¡¡the¡¡earth¡¡towards¡¡the¡¡moon£»¡¡and¡¡the¡¡sun¡¡towards¡¡all¡¡the¡¡primary¡¡planets¡£¡¡¡¨COR¡£¡¡2¡£The¡¡force¡¡of¡¡gravity¡¡which¡¡tends¡¡to¡¡any¡¡one¡¡planet¡¡is¡¡reciprocally¡¡as¡¡the¡¡square¡¡of¡¡the¡¡distance¡¡of¡¡places¡¡from¡¡the¡¡planet's¡¡centre¡£¡¡¡¨COR¡£¡¡3¡£All¡¡the¡¡planets¡¡do¡¡mutually¡¡gravitate¡¡towards¡¡one¡¡another£»¡¡by¡¡Cor¡£¡¡1¡¡and¡¡2£»¡¡and¡¡hence¡¡it¡¡is¡¡that¡¡Jupiter¡¡and¡¡Saturn£»¡¡when¡¡near¡¡their¡¡conjunction£»¡¡by¡¡their¡¡mutual¡¡attractions¡¡sensibly¡¡disturb¡¡each¡¡other's¡¡motions¡£¡¡So¡¡the¡¡sun¡¡disturbs¡¡the¡¡motions¡¡of¡¡the¡¡moon£»¡¡and¡¡both¡¡sun¡¡and¡¡moon¡¡disturb¡¡our¡¡sea£»¡¡as¡¡we¡¡shall¡¡hereafter¡¡explain¡£¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¨SCHOLIUM¡¡¡¨The¡¡force¡¡which¡¡retains¡¡the¡¡celestial¡¡bodies¡¡in¡¡their¡¡orbits¡¡has¡¡been¡¡hitherto¡¡called¡¡centripetal¡¡force£»¡¡but¡¡it¡¡being¡¡now¡¡made¡¡plain¡¡that¡¡it¡¡can¡¡be¡¡no¡¡other¡¡than¡¡a¡¡gravitating¡¡force£»¡¡we¡¡shall¡¡hereafter¡¡call¡¡it¡¡gravity¡£¡¡For¡¡the¡¡cause¡¡of¡¡the¡¡centripetal¡¡force¡¡which¡¡retains¡¡the¡¡moon¡¡in¡¡its¡¡orbit¡¡will¡¡extend¡¡itself¡¡to¡¡all¡¡the¡¡planets¡¡by¡¡Rules¡¡i¡££»¡¡ii¡££»¡¡and¡¡iii¡£¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¨PROPOSITION¡¡VI¡££»¡¡THEOREM¡¡VI¡£¡¡¡¨That¡¡all¡¡bodies¡¡gravitate¡¡towards¡¡every¡¡planet£»¡¡and¡¡that¡¡the¡¡weights¡¡of¡¡the¡¡bodies¡¡towards¡¡any¡¡the¡¡same¡¡planet£»¡¡at¡¡equal¡¡distances¡¡from¡¡the¡¡centre¡¡of¡¡the¡¡planet£»¡¡are¡¡proportional¡¡to¡¡the¡¡quantities¡¡of¡¡matter¡¡which¡¡they¡¡severally¡¡contain¡£
¡¨It¡¡has¡¡been¡¡now¡¡a¡¡long¡¡time¡¡observed¡¡by¡¡others¡¡that¡¡all¡¡sorts¡¡of¡¡heavy¡¡bodies¡¡£¨allowance¡¡being¡¡made¡¡for¡¡the¡¡inability¡¡of¡¡retardation¡¡which¡¡they¡¡suffer¡¡from¡¡a¡¡small¡¡power¡¡of¡¡resistance¡¡in¡¡the¡¡air£©¡¡descend¡¡to¡¡the¡¡earth¡¡FROM¡¡EQUAL¡¡HEIGHTS¡¡in¡¡equal¡¡times£»¡¡and¡¡that¡¡equality¡¡of¡¡times¡¡we¡¡may¡¡distinguish¡¡to¡¡a¡¡great¡¡accuracy¡¡by¡¡help¡¡of¡¡pendulums¡£¡¡I¡¡tried¡¡the¡¡thing¡¡in¡¡gold£»¡¡silver£»¡¡lead£»¡¡glass£»¡¡sand£»¡¡common¡¡salt£»¡¡wood£»¡¡water£»¡¡and¡¡wheat¡£¡¡I¡¡provided¡¡two¡¡wooden¡¡boxes£»¡¡round¡¡and¡¡equal£º¡¡I¡¡filled¡¡the¡¡one¡¡with¡¡wood£»¡¡and¡¡suspended¡¡an¡¡equal¡¡weight¡¡of¡¡gold¡¡£¨as¡¡exactly¡¡as¡¡I¡¡could£©¡¡in¡¡the¡¡centre¡¡of¡¡oscillation¡¡of¡¡the¡¡other¡£¡¡The¡¡boxes¡¡hanging¡¡by¡¡eleven¡¡feet£»¡¡made¡¡a¡¡couple¡¡of¡¡pendulums¡¡exactly¡¡equal¡¡in¡¡weight¡¡and¡¡figure£»¡¡and¡¡equally¡¡receiving¡¡the¡¡resistance¡¡of¡¡the¡¡air¡£¡¡And£»¡¡placing¡¡the¡¡one¡¡by¡¡the¡¡other£»¡¡I¡¡observed¡¡them¡¡to¡¡play¡¡together¡¡forward¡¡and¡¡backward£»¡¡for¡¡a¡¡long¡¡time£»¡¡with¡¡equal¡¡vibrations¡£¡¡And¡¡therefore¡¡the¡¡quantity¡¡of¡¡matter¡¡in¡¡gold¡¡was¡¡to¡¡the¡¡quantity¡¡of¡¡matter¡¡in¡¡the¡¡wood¡¡as¡¡the¡¡action¡¡of¡¡the¡¡motive¡¡force¡¡£¨or¡¡vis¡¡motrix£©¡¡upon¡¡all¡¡the¡¡gold¡¡to¡¡the¡¡action¡¡of¡¡the¡¡same¡¡upon¡¡all¡¡the¡¡woodthat¡¡is£»¡¡as¡¡the¡¡weight¡¡of¡¡the¡¡one¡¡to¡¡the¡¡weight¡¡of¡¡the¡¡other£º¡¡and¡¡the¡¡like¡¡happened¡¡in¡¡the¡¡other¡¡bodies¡£¡¡By¡¡these¡¡experiments£»¡¡in¡¡bodies¡¡of¡¡the¡¡same¡¡weight£»¡¡I¡¡could¡¡manifestly¡¡have¡¡discovered¡¡a¡¡difference¡¡of¡¡matter¡¡less¡¡than¡¡the¡¡thousandth¡¡part¡¡of¡¡the¡¡whole£»¡¡had¡¡any¡¡such¡¡been¡£¡¡But£»¡¡without¡¡all¡¡doubt£»¡¡the¡¡nature¡¡of¡¡gravity¡¡towards¡¡the¡¡planets¡¡is¡¡the¡¡same¡¡as¡¡towards¡¡the¡¡earth¡£¡¡For£»¡¡should¡¡we¡¡imagine¡¡our¡¡terrestrial¡¡bodies¡¡removed¡¡to¡¡the¡¡orb¡¡of¡¡the¡¡moon£»¡¡and¡¡there£»¡¡together¡¡with¡¡the¡¡moon£»¡¡deprived¡¡of¡¡all¡¡motion£»¡¡to¡¡be¡¡let¡¡go£»¡¡so¡¡as¡¡to¡¡fall¡¡together¡¡towards¡¡the¡¡earth£»¡¡it¡¡is¡¡certain£»¡¡from¡¡what¡¡we¡¡have¡¡demonstrated¡¡before£»¡¡that£»¡¡in¡¡equal¡¡times£»¡¡they¡¡would¡¡describe¡¡equal¡¡spaces¡¡with¡¡the¡¡moon£»¡¡and¡¡of¡¡consequence¡¡are¡¡to¡¡the¡¡moon£»¡¡in¡¡quantity¡¡and¡¡matter£»¡¡as¡¡their¡¡weights¡¡to¡¡its¡¡weight¡£¡¡¡¨Moreover£»¡¡since¡¡the¡¡satellites¡¡of¡¡Jupiter¡¡perform¡¡their¡¡revolutions¡¡in¡¡times¡¡which¡¡observe¡¡the¡¡sesquiplicate¡¡proportion¡¡of¡¡their¡¡distances¡¡from¡¡Jupiter's¡¡centre£»¡¡their¡¡accelerative¡¡gravities¡¡towards¡¡Jupiter¡¡will¡¡be¡¡reciprocally¡¡as¡¡the¡¡square¡¡of¡¡their¡¡distances¡¡from¡¡Jupiter's¡¡centrethat¡¡is£»¡¡equal£»¡¡at¡¡equal¡¡distances¡£¡¡And£»¡¡therefore£»¡¡these¡¡satellites£»¡¡if¡¡supposed¡¡to¡¡fall¡¡TOWARDS¡¡JUPITER¡¡from¡¡equal¡¡heights£»¡¡would¡¡describe¡¡equal¡¡spaces¡¡in¡¡equal¡¡times£»¡¡in¡¡like¡¡manner¡¡as¡¡heavy¡¡bodies¡¡do¡¡on¡¡our¡¡earth¡£¡¡And£»¡¡by¡¡the¡¡same¡¡argument£»¡¡if¡¡the¡¡circumsolar¡¡planets¡¡were¡¡supposed¡¡to¡¡be¡¡let¡¡fall¡¡at¡¡equal¡¡distances¡¡from¡¡the¡¡sun£»¡¡they¡¡would£»¡¡in¡¡their¡¡descent¡¡towards¡¡the¡¡sun£»¡¡describe¡¡equal¡¡spaces¡¡in¡¡equal¡¡times¡£¡¡But¡¡forces¡¡which¡¡equally¡¡accelerate¡¡unequal¡¡bodies¡¡must¡¡be¡¡as¡¡those¡¡bodiesthat¡¡is¡¡to¡¡say£»¡¡the¡¡weights¡¡of¡¡the¡¡planets¡¡£¨TOWARDS¡¡THE¡¡SUN¡¡must¡¡be¡¡as¡¡their¡¡quantities¡¡of¡¡matter¡£¡¡Further£»¡¡that¡¡the¡¡weights¡¡of¡¡Jupiter¡¡and¡¡his¡¡satellites¡¡towards¡¡the¡¡sun¡¡are¡¡proportional¡¡to¡¡the¡¡several¡¡quantities¡¡of¡¡their¡¡matter£»¡¡appears¡¡from¡¡the¡¡exceedingly¡¡regular¡¡motions¡¡of¡¡the¡¡satellites¡£¡¡For¡¡if¡¡some¡¡of¡¡these¡¡bodies¡¡were¡¡more¡¡strongly¡¡attracted¡¡to¡¡the¡¡sun¡¡in¡¡proportion¡¡to¡¡their¡¡quantity¡¡of¡¡matter¡¡than¡¡others£»¡¡the¡¡motions¡¡of¡¡the¡¡satellites¡¡would¡¡be¡¡disturbed¡¡by¡¡that¡¡inequality¡¡of¡¡attraction¡£¡¡If¡¡at¡¡equal¡¡distances¡¡from¡¡the¡¡sun¡¡any¡¡satellite£»¡¡in¡¡proportion¡¡to¡¡the¡¡quantity¡¡of¡¡its¡¡matter£»¡¡did¡¡gravitate¡¡towards¡¡the¡¡sun¡¡with¡¡a¡¡force¡¡greater¡¡than¡¡Jupiter¡¡in¡¡proportion¡¡to¡¡his£»¡¡according¡¡to¡¡any¡¡given¡¡proportion£»¡¡suppose¡¡d¡¡to¡¡e£»¡¡then¡¡the¡¡distance¡¡between¡¡the¡¡centres¡¡of¡¡the¡¡sun¡¡and¡¡of¡¡the¡¡satellite's¡¡orbit¡¡would¡¡be¡¡always¡¡greater¡¡than¡¡the¡¡distance¡¡between¡¡the¡¡centres¡¡of¡¡the¡¡sun¡¡and¡¡of¡¡Jupiter¡¡nearly¡¡in¡¡the¡¡subduplicate¡¡of¡¡that¡¡proportion£º¡¡as¡¡by¡¡some¡¡computations¡¡I¡¡have¡¡found¡£¡¡And¡¡if¡¡the¡¡satellite¡¡did¡¡gravitate¡¡towards¡¡the¡¡sun¡¡with¡¡a¡¡force£»¡¡lesser¡¡in¡¡the¡¡proportion¡¡of¡¡e¡¡to¡¡d£»¡¡the¡¡distance¡¡of¡¡the¡¡centre¡¡of¡¡the¡¡satellite's¡¡orb¡¡from¡¡the¡¡sun¡¡would¡¡be¡¡less¡¡than¡¡the¡¡distance¡¡of¡¡the¡¡centre¡¡of¡¡Jupiter¡¡from¡¡the¡¡sun¡¡in¡¡the¡¡subduplicate¡¡of¡¡the¡¡same¡¡proportion¡£¡¡Therefore£»¡¡if¡¡at¡¡equal¡¡distances¡¡from¡¡the¡¡sun£»¡¡the¡¡accelerative¡¡gravity¡¡of¡¡any¡¡satellite¡¡towards¡¡the¡¡sun¡¡were¡¡greater¡¡or¡¡less¡¡than¡¡the¡¡accelerative¡¡gravity¡¡of¡¡Jupiter¡¡towards¡¡the¡¡sun¡¡by¡¡one¡one¡thousandth¡¡part¡¡of¡¡the¡¡whole¡¡gravity£»¡¡the¡¡distance¡¡of¡¡the¡¡centre¡¡of¡¡the¡¡satellite's¡¡orbit¡¡from¡¡the¡¡sun¡¡would¡¡be¡¡greater¡¡or¡¡less¡¡than¡¡the¡¡distance¡¡of¡¡Jupiter¡¡from¡¡the¡¡sun¡¡by¡¡one¡¡one¡two¡thousandth¡¡part¡¡of¡¡the¡¡whole¡¡distancethat¡¡is£»¡¡by¡¡a¡¡fifth¡¡part¡¡of¡¡the¡¡distance¡¡of¡¡the¡¡utmost¡¡satellite¡¡from¡¡the¡¡centre¡¡of¡¡Jupiter£»¡¡an¡¡eccentricity¡¡of¡¡the¡¡orbit¡¡which¡¡would¡¡be¡¡very¡¡sensible¡£¡¡But¡¡the¡¡orbits¡¡of¡¡the¡¡satellites¡¡are¡¡concentric¡¡to¡¡Jupiter£»¡¡and¡¡therefore¡¡the¡¡accelerative¡¡gravities¡¡of¡¡Jupiter¡¡and¡¡of¡¡all¡¡its¡¡satellites¡¡towards¡¡the¡¡sun£»¡¡at¡¡equal¡¡distances¡¡from¡¡the¡¡sun£»¡¡are¡¡as¡¡their¡¡several¡¡quantities¡¡of¡¡matter£»¡¡and¡¡the¡¡weights¡¡of¡¡the¡¡moon¡¡and¡¡of¡¡the¡¡earth¡¡towards¡¡the¡¡sun¡¡are¡¡either¡¡none£»¡¡or¡¡accurately¡¡proportional¡¡to¡¡the¡¡masses¡¡of¡¡matter¡¡which¡¡they¡¡contain¡£¡¡¡¨COR¡£¡¡5¡£The¡¡power¡¡of¡¡gravity¡¡is¡¡of¡¡a¡¡different¡¡nature¡¡from¡¡the¡¡power¡¡of¡¡magnetism£»¡¡for¡¡the¡¡magnetic¡¡attraction¡¡is¡¡not¡¡as¡¡the¡¡matter¡¡attracted¡£¡¡Some¡¡bodies¡¡are¡¡attracted¡¡more¡¡by¡¡the¡¡magnet£»¡¡others¡¡less£»¡¡most¡¡bodies¡¡not¡¡at¡¡all¡£¡¡The¡¡power¡¡of¡¡magnetism¡¡in¡¡one¡¡and¡¡the¡¡same¡¡body¡¡may¡¡be¡¡increased¡¡and¡¡diminished£»¡¡and¡¡is¡¡sometimes¡¡far¡¡stronger£»¡¡for¡¡the¡¡quantity¡¡of¡¡matter£»¡¡than¡¡the¡¡power¡¡of¡¡gravity£»¡¡and¡¡in¡¡receding¡¡from¡¡the¡¡magnet¡¡decreases¡¡not¡¡in¡¡the¡¡duplicate£»¡¡but¡¡almost¡¡in¡¡the¡¡triplicate¡¡proportion¡¡of¡¡the¡¡distance£»¡¡as¡¡nearly¡¡as¡¡I¡¡could¡¡judge¡¡from¡¡some¡¡rude¡¡observations¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¨PROPOSITION¡¡VII¡££»¡¡THEOREM¡¡VII¡£¡¡¡¨That¡¡there¡¡is¡¡a¡¡power¡¡of¡¡gra