on the heavens-µÚ16²¿·Ö
°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·ҳ£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡
ese¡¡thinkers¡¡maintained¡¡was¡¡that¡¡all¡¡else¡¡has¡¡been¡¡generated¡¡and£»¡¡as¡¡they¡¡said£»¡¡'is¡¡flowing¡¡away£»¡¡nothing¡¡having¡¡any¡¡solidity£»¡¡except¡¡one¡¡single¡¡thing¡¡which¡¡persists¡¡as¡¡the¡¡basis¡¡of¡¡all¡¡these¡¡transformations¡£¡¡So¡¡we¡¡may¡¡interpret¡¡the¡¡statements¡¡of¡¡Heraclitus¡¡of¡¡Ephesus¡¡and¡¡many¡¡others¡£¡¡And¡¡some¡¡subject¡¡all¡¡bodies¡¡whatever¡¡to¡¡generation£»¡¡by¡¡means¡¡of¡¡the¡¡composition¡¡and¡¡separation¡¡of¡¡planes¡£¡¡¡¡¡¡Discussion¡¡of¡¡the¡¡other¡¡views¡¡may¡¡be¡¡postponed¡£¡¡But¡¡this¡¡last¡¡theory¡¡which¡¡composes¡¡every¡¡body¡¡of¡¡planes¡¡is£»¡¡as¡¡the¡¡most¡¡superficial¡¡observation¡¡shows£»¡¡in¡¡many¡¡respects¡¡in¡¡plain¡¡contradiction¡¡with¡¡mathematics¡£¡¡It¡¡is£»¡¡however£»¡¡wrong¡¡to¡¡remove¡¡the¡¡foundations¡¡of¡¡a¡¡science¡¡unless¡¡you¡¡can¡¡replace¡¡them¡¡with¡¡others¡¡more¡¡convincing¡£¡¡And£»¡¡secondly£»¡¡the¡¡same¡¡theory¡¡which¡¡composes¡¡solids¡¡of¡¡planes¡¡clearly¡¡composes¡¡planes¡¡of¡¡lines¡¡and¡¡lines¡¡of¡¡points£»¡¡so¡¡that¡¡a¡¡part¡¡of¡¡a¡¡line¡¡need¡¡not¡¡be¡¡a¡¡line¡£¡¡This¡¡matter¡¡has¡¡been¡¡already¡¡considered¡¡in¡¡our¡¡discussion¡¡of¡¡movement£»¡¡where¡¡we¡¡have¡¡shown¡¡that¡¡an¡¡indivisible¡¡length¡¡is¡¡impossible¡£¡¡But¡¡with¡¡respect¡¡to¡¡natural¡¡bodies¡¡there¡¡are¡¡impossibilities¡¡involved¡¡in¡¡the¡¡view¡¡which¡¡asserts¡¡indivisible¡¡lines£»¡¡which¡¡we¡¡may¡¡briefly¡¡consider¡¡at¡¡this¡¡point¡£¡¡For¡¡the¡¡impossible¡¡consequences¡¡which¡¡result¡¡from¡¡this¡¡view¡¡in¡¡the¡¡mathematical¡¡sphere¡¡will¡¡reproduce¡¡themselves¡¡when¡¡it¡¡is¡¡applied¡¡to¡¡physical¡¡bodies£»¡¡but¡¡there¡¡will¡¡be¡¡difficulties¡¡in¡¡physics¡¡which¡¡are¡¡not¡¡present¡¡in¡¡mathematics£»¡¡for¡¡mathematics¡¡deals¡¡with¡¡an¡¡abstract¡¡and¡¡physics¡¡with¡¡a¡¡more¡¡concrete¡¡object¡£¡¡There¡¡are¡¡many¡¡attributes¡¡necessarily¡¡present¡¡in¡¡physical¡¡bodies¡¡which¡¡are¡¡necessarily¡¡excluded¡¡by¡¡indivisibility£»¡¡all¡¡attributes£»¡¡in¡¡fact£»¡¡which¡¡are¡¡divisible¡£¡¡There¡¡can¡¡be¡¡nothing¡¡divisible¡¡in¡¡an¡¡indivisible¡¡thing£»¡¡but¡¡the¡¡attributes¡¡of¡¡bodies¡¡are¡¡all¡¡divisible¡¡in¡¡one¡¡of¡¡two¡¡ways¡£¡¡They¡¡are¡¡divisible¡¡into¡¡kinds£»¡¡as¡¡colour¡¡is¡¡divided¡¡into¡¡white¡¡and¡¡black£»¡¡and¡¡they¡¡are¡¡divisible¡¡per¡¡accidens¡¡when¡¡that¡¡which¡¡has¡¡them¡¡is¡¡divisible¡£¡¡In¡¡this¡¡latter¡¡sense¡¡attributes¡¡which¡¡are¡¡simple¡¡are¡¡nevertheless¡¡divisible¡£¡¡Attributes¡¡of¡¡this¡¡kind¡¡will¡¡serve£»¡¡therefore£»¡¡to¡¡illustrate¡¡the¡¡impossibility¡¡of¡¡the¡¡view¡£¡¡It¡¡is¡¡impossible£»¡¡if¡¡two¡¡parts¡¡of¡¡a¡¡thing¡¡have¡¡no¡¡weight£»¡¡that¡¡the¡¡two¡¡together¡¡should¡¡have¡¡weight¡£¡¡But¡¡either¡¡all¡¡perceptible¡¡bodies¡¡or¡¡some£»¡¡such¡¡as¡¡earth¡¡and¡¡water£»¡¡have¡¡weight£»¡¡as¡¡these¡¡thinkers¡¡would¡¡themselves¡¡admit¡£¡¡Now¡¡if¡¡the¡¡point¡¡has¡¡no¡¡weight£»¡¡clearly¡¡the¡¡lines¡¡have¡¡not¡¡either£»¡¡and£»¡¡if¡¡they¡¡have¡¡not£»¡¡neither¡¡have¡¡the¡¡planes¡£¡¡Therefore¡¡no¡¡body¡¡has¡¡weight¡£¡¡It¡¡is£»¡¡further£»¡¡manifest¡¡that¡¡their¡¡point¡¡cannot¡¡have¡¡weight¡£¡¡For¡¡while¡¡a¡¡heavy¡¡thing¡¡may¡¡always¡¡be¡¡heavier¡¡than¡¡something¡¡and¡¡a¡¡light¡¡thing¡¡lighter¡¡than¡¡something£»¡¡a¡¡thing¡¡which¡¡is¡¡heavier¡¡or¡¡lighter¡¡than¡¡something¡¡need¡¡not¡¡be¡¡itself¡¡heavy¡¡or¡¡light£»¡¡just¡¡as¡¡a¡¡large¡¡thing¡¡is¡¡larger¡¡than¡¡others£»¡¡but¡¡what¡¡is¡¡larger¡¡is¡¡not¡¡always¡¡large¡£¡¡A¡¡thing¡¡which£»¡¡judged¡¡absolutely£»¡¡is¡¡small¡¡may¡¡none¡¡the¡¡less¡¡be¡¡larger¡¡than¡¡other¡¡things¡£¡¡Whatever£»¡¡then£»¡¡is¡¡heavy¡¡and¡¡also¡¡heavier¡¡than¡¡something¡¡else£»¡¡must¡¡exceed¡¡this¡¡by¡¡something¡¡which¡¡is¡¡heavy¡£¡¡A¡¡heavy¡¡thing¡¡therefore¡¡is¡¡always¡¡divisible¡£¡¡But¡¡it¡¡is¡¡common¡¡ground¡¡that¡¡a¡¡point¡¡is¡¡indivisible¡£¡¡Again£»¡¡suppose¡¡that¡¡what¡¡is¡¡heavy¡¡or¡¡weight¡¡is¡¡a¡¡dense¡¡body£»¡¡and¡¡what¡¡is¡¡light¡¡rare¡£¡¡Dense¡¡differs¡¡from¡¡rare¡¡in¡¡containing¡¡more¡¡matter¡¡in¡¡the¡¡same¡¡cubic¡¡area¡£¡¡A¡¡point£»¡¡then£»¡¡if¡¡it¡¡may¡¡be¡¡heavy¡¡or¡¡light£»¡¡may¡¡be¡¡dense¡¡or¡¡rare¡£¡¡But¡¡the¡¡dense¡¡is¡¡divisible¡¡while¡¡a¡¡point¡¡is¡¡indivisible¡£¡¡And¡¡if¡¡what¡¡is¡¡heavy¡¡must¡¡be¡¡either¡¡hard¡¡or¡¡soft£»¡¡an¡¡impossible¡¡consequence¡¡is¡¡easy¡¡to¡¡draw¡£¡¡For¡¡a¡¡thing¡¡is¡¡soft¡¡if¡¡its¡¡surface¡¡can¡¡be¡¡pressed¡¡in£»¡¡hard¡¡if¡¡it¡¡cannot£»¡¡and¡¡if¡¡it¡¡can¡¡be¡¡pressed¡¡in¡¡it¡¡is¡¡divisible¡£¡¡¡¡¡¡Moreover£»¡¡no¡¡weight¡¡can¡¡consist¡¡of¡¡parts¡¡not¡¡possessing¡¡weight¡£¡¡For¡¡how£»¡¡except¡¡by¡¡the¡¡merest¡¡fiction£»¡¡can¡¡they¡¡specify¡¡the¡¡number¡¡and¡¡character¡¡of¡¡the¡¡parts¡¡which¡¡will¡¡produce¡¡weight£¿¡¡And£»¡¡further£»¡¡when¡¡one¡¡weight¡¡is¡¡greater¡¡than¡¡another£»¡¡the¡¡difference¡¡is¡¡a¡¡third¡¡weight£»¡¡from¡¡which¡¡it¡¡will¡¡follow¡¡that¡¡every¡¡indivisible¡¡part¡¡possesses¡¡weight¡£¡¡For¡¡suppose¡¡that¡¡a¡¡body¡¡of¡¡four¡¡points¡¡possesses¡¡weight¡£¡¡A¡¡body¡¡composed¡¡of¡¡more¡¡than¡¡four¡¡points¡¡will¡¡superior¡¡in¡¡weight¡¡to¡¡it£»¡¡a¡¡thing¡¡which¡¡has¡¡weight¡£¡¡But¡¡the¡¡difference¡¡between¡¡weight¡¡and¡¡weight¡¡must¡¡be¡¡a¡¡weight£»¡¡as¡¡the¡¡difference¡¡between¡¡white¡¡and¡¡whiter¡¡is¡¡white¡£¡¡Here¡¡the¡¡difference¡¡which¡¡makes¡¡the¡¡superior¡¡weight¡¡heavier¡¡is¡¡the¡¡single¡¡point¡¡which¡¡remains¡¡when¡¡the¡¡common¡¡number£»¡¡four£»¡¡is¡¡subtracted¡£¡¡A¡¡single¡¡point£»¡¡therefore£»¡¡has¡¡weight¡£¡¡¡¡¡¡Further£»¡¡to¡¡assume£»¡¡on¡¡the¡¡one¡¡hand£»¡¡that¡¡the¡¡planes¡¡can¡¡only¡¡be¡¡put¡¡in¡¡linear¡¡contact¡¡would¡¡be¡¡ridiculous¡£¡¡For¡¡just¡¡as¡¡there¡¡are¡¡two¡¡ways¡¡of¡¡putting¡¡lines¡¡together£»¡¡namely£»¡¡end¡¡to¡¡and¡¡side¡¡by¡¡side£»¡¡so¡¡there¡¡must¡¡be¡¡two¡¡ways¡¡of¡¡putting¡¡planes¡¡together¡£¡¡Lines¡¡can¡¡be¡¡put¡¡together¡¡so¡¡that¡¡contact¡¡is¡¡linear¡¡by¡¡laying¡¡one¡¡along¡¡the¡¡other£»¡¡though¡¡not¡¡by¡¡putting¡¡them¡¡end¡¡to¡¡end¡£¡¡But¡¡if£»¡¡similarly£»¡¡in¡¡putting¡¡the¡¡lanes¡¡together£»¡¡superficial¡¡contact¡¡is¡¡allowed¡¡as¡¡an¡¡alternative¡¡to¡¡linear£»¡¡that¡¡method¡¡will¡¡give¡¡them¡¡bodies¡¡which¡¡are¡¡not¡¡any¡¡element¡¡nor¡¡composed¡¡of¡¡elements¡£¡¡Again£»¡¡if¡¡it¡¡is¡¡the¡¡number¡¡of¡¡planes¡¡in¡¡a¡¡body¡¡that¡¡makes¡¡one¡¡heavier¡¡than¡¡another£»¡¡as¡¡the¡¡Timaeus¡¡explains£»¡¡clearly¡¡the¡¡line¡¡and¡¡the¡¡point¡¡will¡¡have¡¡weight¡£¡¡For¡¡the¡¡three¡¡cases¡¡are£»¡¡as¡¡we¡¡said¡¡before£»¡¡analogous¡£¡¡But¡¡if¡¡the¡¡reason¡¡of¡¡differences¡¡of¡¡weight¡¡is¡¡not¡¡this£»¡¡but¡¡rather¡¡the¡¡heaviness¡¡of¡¡earth¡¡and¡¡the¡¡lightness¡¡of¡¡fire£»¡¡then¡¡some¡¡of¡¡the¡¡planes¡¡will¡¡be¡¡light¡¡and¡¡others¡¡heavy¡¡£¨which¡¡involves¡¡a¡¡similar¡¡distinction¡¡in¡¡the¡¡lines¡¡and¡¡the¡¡points£©£»¡¡the¡¡earthplane£»¡¡I¡¡mean£»¡¡will¡¡be¡¡heavier¡¡than¡¡the¡¡fire¡plane¡£¡¡In¡¡general£»¡¡the¡¡result¡¡is¡¡either¡¡that¡¡there¡¡is¡¡no¡¡magnitude¡¡at¡¡all£»¡¡or¡¡that¡¡all¡¡magnitude¡¡could¡¡be¡¡done¡¡away¡¡with¡£¡¡For¡¡a¡¡point¡¡is¡¡to¡¡a¡¡line¡¡as¡¡a¡¡line¡¡is¡¡to¡¡a¡¡plane¡¡and¡¡as¡¡a¡¡plane¡¡is¡¡to¡¡a¡¡body¡£¡¡Now¡¡the¡¡various¡¡forms¡¡in¡¡passing¡¡into¡¡one¡¡another¡¡will¡¡each¡¡be¡¡resolved¡¡into¡¡its¡¡ultimate¡¡constituents¡£¡¡It¡¡might¡¡happen¡¡therefore¡¡that¡¡nothing¡¡existed¡¡except¡¡points£»¡¡and¡¡that¡¡there¡¡was¡¡no¡¡body¡¡at¡¡all¡£¡¡A¡¡further¡¡consideration¡¡is¡¡that¡¡if¡¡time¡¡is¡¡similarly¡¡constituted£»¡¡there¡¡would¡¡be£»¡¡or¡¡might¡¡be£»¡¡a¡¡time¡¡at¡¡which¡¡it¡¡was¡¡done¡¡away¡¡with¡£¡¡For¡¡the¡¡indivisible¡¡now¡¡is¡¡like¡¡a¡¡point¡¡in¡¡a¡¡line¡£¡¡The¡¡same¡¡consequences¡¡follow¡¡from¡¡composing¡¡the¡¡heaven¡¡of¡¡numbers£»¡¡as¡¡some¡¡of¡¡the¡¡Pythagoreans¡¡do¡¡who¡¡make¡¡all¡¡nature¡¡out¡¡of¡¡numbers¡£¡¡For¡¡natural¡¡bodies¡¡are¡¡manifestly¡¡endowed¡¡with¡¡weight¡¡and¡¡lightness£»¡¡but¡¡an¡¡assemblage¡¡of¡¡units¡¡can¡¡neither¡¡be¡¡composed¡¡to¡¡form¡¡a¡¡body¡¡nor¡¡possess¡¡weight¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡2
¡¡¡¡The¡¡necessity¡¡that¡¡each¡¡of¡¡the¡¡simple¡¡bodies¡¡should¡¡have¡¡a¡¡natural¡¡movement¡¡may¡¡be¡¡shown¡¡as¡¡follows¡£¡¡They¡¡manifestly¡¡move£»¡¡and¡¡if¡¡they¡¡have¡¡no¡¡proper¡¡movement¡¡they¡¡must¡¡move¡¡by¡¡constraint£º¡¡and¡¡the¡¡constrained¡¡is¡¡the¡¡same¡¡as¡¡the¡¡unnatural¡£¡¡Now¡¡an¡¡unnatural¡¡movement¡¡presupposes¡¡a¡¡natural¡¡movement¡¡which¡¡it¡¡contravenes£»¡¡and¡¡which£»¡¡however¡¡many¡¡the¡¡unnatural¡¡movements£»¡¡is¡¡always¡¡one¡£¡¡For¡¡naturally¡¡a¡¡thing¡¡moves¡¡in¡¡one¡¡way£»¡¡while¡¡its¡¡unnatural¡¡movements¡¡are¡¡manifold¡£¡¡The¡¡same¡¡may¡¡be¡¡shown£»¡¡from¡¡the¡¡fact¡¡of¡¡rest¡£¡¡Rest£»¡¡also£»¡¡must¡¡either¡¡be¡¡constrained¡¡or¡¡natural£»¡¡constrained¡¡in¡¡a¡¡place¡¡to¡¡which¡¡movement¡¡was¡¡constrained£»¡¡natural¡¡in¡¡a¡¡place¡¡movement¡¡to¡¡which¡¡was¡¡natural¡£¡¡Now¡¡manifestly¡¡there¡¡is¡¡a¡¡body¡¡which¡¡is¡¡at¡¡rest¡¡at¡¡the¡¡centre¡£¡¡If¡¡then¡¡this¡¡rest¡¡is¡¡natural¡¡to¡¡it£»¡¡clearly¡¡motion¡¡to¡¡this¡¡place¡¡is¡¡natural¡¡to¡¡it¡£¡¡If£»¡¡on¡¡the¡¡other¡¡hand£»¡¡its¡¡rest¡¡is¡¡constrained£»¡¡what¡¡is¡¡hindering¡¡its¡¡motion£¿¡¡Something£»¡¡which¡¡is¡¡at¡¡rest£º¡¡but¡¡if¡¡so£»¡¡we¡¡shall¡¡simply¡¡repeat¡¡the¡¡same¡¡argument£»¡¡and¡¡either¡¡we¡¡shall¡¡come¡¡to¡¡an¡¡ultimate¡¡something¡¡to¡¡which¡¡rest¡¡where¡¡it¡¡is¡¡or¡¡we¡¡shall¡¡have¡¡an¡¡infinite¡¡process£»¡¡which¡¡is¡¡impossible¡£¡¡The¡¡hindrance¡¡to¡¡its¡¡movement£»¡¡then£»¡¡we¡¡will¡¡suppose£»¡¡is¡¡a¡¡moving¡¡thing¡as¡¡Empedocles¡¡says¡¡that¡¡it¡¡is¡¡the¡¡vortex¡¡which¡¡keeps¡¡the¡¡earth¡¡still¡£º¡¡but¡¡in¡¡that¡¡case¡¡we¡¡ask£»¡¡where¡¡would¡¡it¡¡have¡¡moved¡¡to¡¡but¡¡for¡¡the¡¡vortex£¿¡¡It¡¡could¡¡not¡¡move¡¡infinitely£»¡¡for¡¡to¡¡traverse¡¡an¡¡infinite¡¡is¡¡impossible£»¡¡and¡¡impossibilities¡¡do¡¡not¡¡happen¡£¡¡So¡¡the¡¡moving¡¡thing¡¡must¡¡stop¡¡somewhere£»¡¡and¡¡there¡¡rest¡¡not¡¡by¡¡constraint¡¡but¡¡naturally¡£¡¡But¡¡a¡¡natural¡¡rest¡¡proves¡¡a¡¡natural¡¡movement¡¡to¡¡the¡¡place¡¡of¡¡rest¡£¡¡Hence¡¡Leucippus¡¡and¡¡Democritus£»¡¡who¡¡say¡¡that¡¡the¡¡primary¡¡bodies¡¡are¡¡in¡¡perpetual¡¡movement¡¡in¡¡the¡¡void¡¡or¡¡infinite£»¡¡may¡¡be¡¡asked¡¡to¡¡explain¡¡the¡¡manner¡¡of¡¡their¡¡motion¡¡and¡¡the¡¡kind¡¡of¡¡movement¡¡which¡¡is¡¡natural¡¡to¡¡them¡£¡¡For¡¡if¡¡the¡¡various¡¡elements¡¡are¡¡constrained¡¡by¡¡one¡¡another¡¡to¡¡move¡¡as¡¡they¡¡do£»¡¡each¡¡must¡¡still¡¡have¡¡a¡¡natural¡¡movement¡¡which¡¡the¡¡constrained¡¡contravenes£»¡¡and¡¡the¡¡prime¡¡mover¡¡must¡¡cause¡¡motion¡¡not¡¡by¡¡constraint¡¡but¡¡naturally¡£¡¡If¡¡there¡¡is¡¡no¡¡ultimate¡¡natural¡¡cause¡¡of¡¡movement¡¡and¡¡each¡¡preceding¡¡term¡¡in¡¡the¡¡series¡¡is¡¡always¡¡moved¡¡by¡¡constraint£»¡¡we¡¡shall¡¡have¡¡an¡¡infinite¡¡process¡£¡¡The¡¡same¡¡difficulty¡¡is¡¡involved¡¡even¡¡if¡¡it¡¡is¡¡supposed£»¡¡as¡¡we¡¡read¡¡in¡¡the¡¡Timaeus£»¡¡that¡¡before¡¡the¡¡ordered¡¡world¡¡was¡¡made¡¡the¡¡elements¡¡moved¡¡without¡¡order¡£¡¡Their¡¡movement¡¡must¡¡have¡¡been¡¡due¡¡either¡¡to¡¡constraint¡¡or¡¡to¡¡their¡¡nature¡£¡¡And¡¡if¡¡their¡¡movement¡¡was¡¡natural£»¡¡a¡¡moment's¡¡consideration¡¡shows¡¡that¡¡there¡¡was¡¡already¡¡an¡¡ordered¡¡world¡£¡¡For¡¡the¡¡prime¡¡mover¡¡must¡¡cause¡¡motion¡¡in¡¡virtue¡¡of¡¡its¡¡own¡¡natural¡¡movement£»¡¡and¡¡the¡¡other¡¡bodies£»¡¡moving¡¡without¡¡constraint£»¡¡as¡¡they¡¡came¡¡to¡¡rest¡¡in¡¡their¡¡proper¡¡places£»¡¡would¡¡fall¡¡into¡¡the¡¡order¡¡in¡¡which¡¡they¡¡now¡¡stand£»¡¡the¡¡heavy¡¡bodies¡¡moving¡¡towards¡¡the¡¡centre¡¡and¡¡the¡¡light¡¡bodies¡¡away¡¡from¡¡it¡£¡¡But¡¡that¡¡is¡¡the¡¡order¡¡of¡¡their¡¡distribution¡¡in¡¡our¡¡world¡£¡¡There¡¡is¡¡a¡¡further¡¡question£»¡¡too£»¡¡which¡¡might¡¡be¡¡asked¡£¡¡Is¡¡it¡¡possible¡¡or¡¡impossible¡¡that¡¡bodies¡¡in¡¡unordered¡¡movement¡¡should¡¡combine¡¡in¡¡some¡¡cases¡¡into¡¡combinations¡¡like¡¡those¡¡of¡¡which¡¡bodies¡¡of¡¡nature's¡¡composing¡¡are¡¡composed£»¡¡such£»¡¡I¡¡mean£»¡¡as¡¡bones¡¡and¡¡flesh£¿¡¡Yet¡¡this¡¡is¡¡what¡¡Empedocles¡¡asserts¡¡to¡¡have¡¡occurred¡¡under¡¡Love¡£¡¡'Many¡¡a¡¡head'£»¡¡says¡¡he£»¡¡'came¡¡to¡¡birth¡¡without¡¡a¡¡neck¡£'¡¡The¡¡answer¡¡to¡¡the¡¡view¡¡that¡¡there¡¡are¡¡infinite¡¡bodies¡¡moving¡¡in¡¡an¡¡infinite¡¡is¡¡that£»¡¡if¡¡the¡¡cause¡¡of¡¡movement¡¡is¡¡single£»¡¡they¡¡must¡¡move¡¡with¡¡a¡¡single¡¡motion£»¡¡and¡¡therefore¡¡not¡¡without¡¡order£»¡¡and¡¡if£»¡¡on¡¡the¡¡other¡¡hand£»¡¡the¡¡causes¡¡are¡¡of¡¡infinite¡¡variety£»¡¡their¡¡motions¡¡too¡¡must¡¡be¡¡infinitely¡¡varied¡£¡¡For¡¡a¡¡finite¡¡number¡¡of¡¡causes¡¡would¡¡produce¡¡a¡¡kind¡¡of¡¡order£»¡¡since¡¡absence¡¡of¡¡order¡¡is¡¡not¡¡proved¡¡by¡¡diversity¡¡of¡¡direction¡¡in¡¡motions£º¡¡indeed£»¡¡in¡¡the¡¡world¡¡we¡¡know£»¡¡not¡¡all¡¡bodies£»¡¡but¡¡only¡¡bodies¡¡of¡¡the¡¡same¡¡kind£»¡¡have¡¡a¡¡common¡¡goal¡¡of¡¡movement¡£¡¡Again£»¡¡disorderly¡¡movement¡¡means¡¡in¡¡reality¡¡unnatural¡¡movement£»¡¡since¡¡the¡¡order¡¡proper¡¡to¡¡perceptible¡¡things¡¡is¡¡their¡¡nature¡£¡¡And¡¡there¡¡is¡¡also¡¡