on the heavens-µÚ17²¿·Ö
°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·ҳ£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡
unnatural¡¡movement£»¡¡since¡¡the¡¡order¡¡proper¡¡to¡¡perceptible¡¡things¡¡is¡¡their¡¡nature¡£¡¡And¡¡there¡¡is¡¡also¡¡absurdity¡¡and¡¡impossibility¡¡in¡¡the¡¡notion¡¡that¡¡the¡¡disorderly¡¡movement¡¡is¡¡infinitely¡¡continued¡£¡¡For¡¡the¡¡nature¡¡of¡¡things¡¡is¡¡the¡¡nature¡¡which¡¡most¡¡of¡¡them¡¡possess¡¡for¡¡most¡¡of¡¡the¡¡time¡£¡¡Thus¡¡their¡¡view¡¡brings¡¡them¡¡into¡¡the¡¡contrary¡¡position¡¡that¡¡disorder¡¡is¡¡natural£»¡¡and¡¡order¡¡or¡¡system¡¡unnatural¡£¡¡But¡¡no¡¡natural¡¡fact¡¡can¡¡originate¡¡in¡¡chance¡£¡¡This¡¡is¡¡a¡¡point¡¡which¡¡Anaxagoras¡¡seems¡¡to¡¡have¡¡thoroughly¡¡grasped£»¡¡for¡¡he¡¡starts¡¡his¡¡cosmogony¡¡from¡¡unmoved¡¡things¡£¡¡The¡¡others£»¡¡it¡¡is¡¡true£»¡¡make¡¡things¡¡collect¡¡together¡¡somehow¡¡before¡¡they¡¡try¡¡to¡¡produce¡¡motion¡¡and¡¡separation¡£¡¡But¡¡there¡¡is¡¡no¡¡sense¡¡in¡¡starting¡¡generation¡¡from¡¡an¡¡original¡¡state¡¡in¡¡which¡¡bodies¡¡are¡¡separated¡¡and¡¡in¡¡movement¡£¡¡Hence¡¡Empedocles¡¡begins¡¡after¡¡the¡¡process¡¡ruled¡¡by¡¡Love£º¡¡for¡¡he¡¡could¡¡not¡¡have¡¡constructed¡¡the¡¡heaven¡¡by¡¡building¡¡it¡¡up¡¡out¡¡of¡¡bodies¡¡in¡¡separation£»¡¡making¡¡them¡¡to¡¡combine¡¡by¡¡the¡¡power¡¡of¡¡Love£»¡¡since¡¡our¡¡world¡¡has¡¡its¡¡constituent¡¡elements¡¡in¡¡separation£»¡¡and¡¡therefore¡¡presupposes¡¡a¡¡previous¡¡state¡¡of¡¡unity¡¡and¡¡combination¡£¡¡¡¡¡¡These¡¡arguments¡¡make¡¡it¡¡plain¡¡that¡¡every¡¡body¡¡has¡¡its¡¡natural¡¡movement£»¡¡which¡¡is¡¡not¡¡constrained¡¡or¡¡contrary¡¡to¡¡its¡¡nature¡£¡¡We¡¡go¡¡on¡¡to¡¡show¡¡that¡¡there¡¡are¡¡certain¡¡bodies¡¡whose¡¡necessary¡¡impetus¡¡is¡¡that¡¡of¡¡weight¡¡and¡¡lightness¡£¡¡Of¡¡necessity£»¡¡we¡¡assert£»¡¡they¡¡must¡¡move£»¡¡and¡¡a¡¡moved¡¡thing¡¡which¡¡has¡¡no¡¡natural¡¡impetus¡¡cannot¡¡move¡¡either¡¡towards¡¡or¡¡away¡¡from¡¡the¡¡centre¡£¡¡Suppose¡¡a¡¡body¡¡A¡¡without¡¡weight£»¡¡and¡¡a¡¡body¡¡B¡¡endowed¡¡with¡¡weight¡£¡¡Suppose¡¡the¡¡weightless¡¡body¡¡to¡¡move¡¡the¡¡distance¡¡CD£»¡¡while¡¡B¡¡in¡¡the¡¡same¡¡time¡¡moves¡¡the¡¡distance¡¡CE£»¡¡which¡¡will¡¡be¡¡greater¡¡since¡¡the¡¡heavy¡¡thing¡¡must¡¡move¡¡further¡£¡¡Let¡¡the¡¡heavy¡¡body¡¡then¡¡be¡¡divided¡¡in¡¡the¡¡proportion¡¡CE£º¡¡CD¡¡£¨for¡¡there¡¡is¡¡no¡¡reason¡¡why¡¡a¡¡part¡¡of¡¡B¡¡should¡¡not¡¡stand¡¡in¡¡this¡¡relation¡¡to¡¡the¡¡whole£©¡£¡¡Now¡¡if¡¡the¡¡whole¡¡moves¡¡the¡¡whole¡¡distance¡¡CE£»¡¡the¡¡part¡¡must¡¡in¡¡the¡¡same¡¡time¡¡move¡¡the¡¡distance¡¡CD¡£¡¡A¡¡weightless¡¡body£»¡¡therefore£»¡¡and¡¡one¡¡which¡¡has¡¡weight¡¡will¡¡move¡¡the¡¡same¡¡distance£»¡¡which¡¡is¡¡impossible¡£¡¡And¡¡the¡¡same¡¡argument¡¡would¡¡fit¡¡the¡¡case¡¡of¡¡lightness¡£¡¡Again£»¡¡a¡¡body¡¡which¡¡is¡¡in¡¡motion¡¡but¡¡has¡¡neither¡¡weight¡¡nor¡¡lightness£»¡¡must¡¡be¡¡moved¡¡by¡¡constraint£»¡¡and¡¡must¡¡continue¡¡its¡¡constrained¡¡movement¡¡infinitely¡£¡¡For¡¡there¡¡will¡¡be¡¡a¡¡force¡¡which¡¡moves¡¡it£»¡¡and¡¡the¡¡smaller¡¡and¡¡lighter¡¡a¡¡body¡¡is¡¡the¡¡further¡¡will¡¡a¡¡given¡¡force¡¡move¡¡it¡£¡¡Now¡¡let¡¡A£»¡¡the¡¡weightless¡¡body£»¡¡be¡¡moved¡¡the¡¡distance¡¡CE£»¡¡and¡¡B£»¡¡which¡¡has¡¡weight£»¡¡be¡¡moved¡¡in¡¡the¡¡same¡¡time¡¡the¡¡distance¡¡CD¡£¡¡Dividing¡¡the¡¡heavy¡¡body¡¡in¡¡the¡¡proportion¡¡CE£ºCD£»¡¡we¡¡subtract¡¡from¡¡the¡¡heavy¡¡body¡¡a¡¡part¡¡which¡¡will¡¡in¡¡the¡¡same¡¡time¡¡move¡¡the¡¡distance¡¡CE£»¡¡since¡¡the¡¡whole¡¡moved¡¡CD£º¡¡for¡¡the¡¡relative¡¡speeds¡¡of¡¡the¡¡two¡¡bodies¡¡will¡¡be¡¡in¡¡inverse¡¡ratio¡¡to¡¡their¡¡respective¡¡sizes¡£¡¡Thus¡¡the¡¡weightless¡¡body¡¡will¡¡move¡¡the¡¡same¡¡distance¡¡as¡¡the¡¡heavy¡¡in¡¡the¡¡same¡¡time¡£¡¡But¡¡this¡¡is¡¡impossible¡£¡¡Hence£»¡¡since¡¡the¡¡motion¡¡of¡¡the¡¡weightless¡¡body¡¡will¡¡cover¡¡a¡¡greater¡¡distance¡¡than¡¡any¡¡that¡¡is¡¡suggested£»¡¡it¡¡will¡¡continue¡¡infinitely¡£¡¡It¡¡is¡¡therefore¡¡obvious¡¡that¡¡every¡¡body¡¡must¡¡have¡¡a¡¡definite¡¡weight¡¡or¡¡lightness¡£¡¡But¡¡since¡¡'nature'¡¡means¡¡a¡¡source¡¡of¡¡movement¡¡within¡¡the¡¡thing¡¡itself£»¡¡while¡¡a¡¡force¡¡is¡¡a¡¡source¡¡of¡¡movement¡¡in¡¡something¡¡other¡¡than¡¡it¡¡or¡¡in¡¡itself¡¡qua¡¡other£»¡¡and¡¡since¡¡movement¡¡is¡¡always¡¡due¡¡either¡¡to¡¡nature¡¡or¡¡to¡¡constraint£»¡¡movement¡¡which¡¡is¡¡natural£»¡¡as¡¡downward¡¡movement¡¡is¡¡to¡¡a¡¡stone£»¡¡will¡¡be¡¡merely¡¡accelerated¡¡by¡¡an¡¡external¡¡force£»¡¡while¡¡an¡¡unnatural¡¡movement¡¡will¡¡be¡¡due¡¡to¡¡the¡¡force¡¡alone¡£¡¡In¡¡either¡¡case¡¡the¡¡air¡¡is¡¡as¡¡it¡¡were¡¡instrumental¡¡to¡¡the¡¡force¡£¡¡For¡¡air¡¡is¡¡both¡¡light¡¡and¡¡heavy£»¡¡and¡¡thus¡¡qua¡¡light¡¡produces¡¡upward¡¡motion£»¡¡being¡¡propelled¡¡and¡¡set¡¡in¡¡motion¡¡by¡¡the¡¡force£»¡¡and¡¡qua¡¡heavy¡¡produces¡¡a¡¡downward¡¡motion¡£¡¡In¡¡either¡¡case¡¡the¡¡force¡¡transmits¡¡the¡¡movement¡¡to¡¡the¡¡body¡¡by¡¡first£»¡¡as¡¡it¡¡were£»¡¡impregnating¡¡the¡¡air¡£¡¡That¡¡is¡¡why¡¡a¡¡body¡¡moved¡¡by¡¡constraint¡¡continues¡¡to¡¡move¡¡when¡¡that¡¡which¡¡gave¡¡the¡¡impulse¡¡ceases¡¡to¡¡accompany¡¡it¡£¡¡Otherwise£»¡¡i¡£e¡£¡¡if¡¡the¡¡air¡¡were¡¡not¡¡endowed¡¡with¡¡this¡¡function£»¡¡constrained¡¡movement¡¡would¡¡be¡¡impossible¡£¡¡And¡¡the¡¡natural¡¡movement¡¡of¡¡a¡¡body¡¡may¡¡be¡¡helped¡¡on¡¡in¡¡the¡¡same¡¡way¡£¡¡This¡¡discussion¡¡suffices¡¡to¡¡show¡¡£¨1£©¡¡that¡¡all¡¡bodies¡¡are¡¡either¡¡light¡¡or¡¡heavy£»¡¡and¡¡£¨2£©¡¡how¡¡unnatural¡¡movement¡¡takes¡¡place¡£¡¡¡¡¡¡From¡¡what¡¡has¡¡been¡¡said¡¡earlier¡¡it¡¡is¡¡plain¡¡that¡¡there¡¡cannot¡¡be¡¡generation¡¡either¡¡of¡¡everything¡¡or¡¡in¡¡an¡¡absolute¡¡sense¡¡of¡¡anything¡£¡¡It¡¡is¡¡impossible¡¡that¡¡everything¡¡should¡¡be¡¡generated£»¡¡unless¡¡an¡¡extra¡corporeal¡¡void¡¡is¡¡possible¡£¡¡For£»¡¡assuming¡¡generation£»¡¡the¡¡place¡¡which¡¡is¡¡to¡¡be¡¡occupied¡¡by¡¡that¡¡which¡¡is¡¡coming¡¡to¡¡be£»¡¡must¡¡have¡¡been¡¡previously¡¡occupied¡¡by¡¡void¡¡in¡¡which¡¡no¡¡body¡¡was¡£¡¡Now¡¡it¡¡is¡¡quite¡¡possible¡¡for¡¡one¡¡body¡¡to¡¡be¡¡generated¡¡out¡¡of¡¡another£»¡¡air¡¡for¡¡instance¡¡out¡¡of¡¡fire£»¡¡but¡¡in¡¡the¡¡absence¡¡of¡¡any¡¡pre¡existing¡¡mass¡¡generation¡¡is¡¡impossible¡£¡¡That¡¡which¡¡is¡¡potentially¡¡a¡¡certain¡¡kind¡¡of¡¡body¡¡may£»¡¡it¡¡is¡¡true£»¡¡become¡¡such¡¡in¡¡actuality£»¡¡But¡¡if¡¡the¡¡potential¡¡body¡¡was¡¡not¡¡already¡¡in¡¡actuality¡¡some¡¡other¡¡kind¡¡of¡¡body£»¡¡the¡¡existence¡¡of¡¡an¡¡extra¡corporeal¡¡void¡¡must¡¡be¡¡admitted¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡3
¡¡¡¡It¡¡remains¡¡to¡¡say¡¡what¡¡bodies¡¡are¡¡subject¡¡to¡¡generation£»¡¡and¡¡why¡£¡¡Since¡¡in¡¡every¡¡case¡¡knowledge¡¡depends¡¡on¡¡what¡¡is¡¡primary£»¡¡and¡¡the¡¡elements¡¡are¡¡the¡¡primary¡¡constituents¡¡of¡¡bodies£»¡¡we¡¡must¡¡ask¡¡which¡¡of¡¡such¡¡bodies¡¡are¡¡elements£»¡¡and¡¡why£»¡¡and¡¡after¡¡that¡¡what¡¡is¡¡their¡¡number¡¡and¡¡character¡£¡¡The¡¡answer¡¡will¡¡be¡¡plain¡¡if¡¡we¡¡first¡¡explain¡¡what¡¡kind¡¡of¡¡substance¡¡an¡¡element¡¡is¡£¡¡An¡¡element£»¡¡we¡¡take¡¡it£»¡¡is¡¡a¡¡body¡¡into¡¡which¡¡other¡¡bodies¡¡may¡¡be¡¡analysed£»¡¡present¡¡in¡¡them¡¡potentially¡¡or¡¡in¡¡actuality¡¡£¨which¡¡of¡¡these£»¡¡is¡¡still¡¡disputable£©£»¡¡and¡¡not¡¡itself¡¡divisible¡¡into¡¡bodies¡¡different¡¡in¡¡form¡£¡¡That£»¡¡or¡¡something¡¡like¡¡it£»¡¡is¡¡what¡¡all¡¡men¡¡in¡¡every¡¡case¡¡mean¡¡by¡¡element¡£¡¡Now¡¡if¡¡what¡¡we¡¡have¡¡described¡¡is¡¡an¡¡element£»¡¡clearly¡¡there¡¡must¡¡be¡¡such¡¡bodies¡£¡¡For¡¡flesh¡¡and¡¡wood¡¡and¡¡all¡¡other¡¡similar¡¡bodies¡¡contain¡¡potentially¡¡fire¡¡and¡¡earth£»¡¡since¡¡one¡¡sees¡¡these¡¡elements¡¡exuded¡¡from¡¡them£»¡¡and£»¡¡on¡¡the¡¡other¡¡hand£»¡¡neither¡¡in¡¡potentiality¡¡nor¡¡in¡¡actuality¡¡does¡¡fire¡¡contain¡¡flesh¡¡or¡¡wood£»¡¡or¡¡it¡¡would¡¡exude¡¡them¡£¡¡Similarly£»¡¡even¡¡if¡¡there¡¡were¡¡only¡¡one¡¡elementary¡¡body£»¡¡it¡¡would¡¡not¡¡contain¡¡them¡£¡¡For¡¡though¡¡it¡¡will¡¡be¡¡either¡¡flesh¡¡or¡¡bone¡¡or¡¡something¡¡else£»¡¡that¡¡does¡¡not¡¡at¡¡once¡¡show¡¡that¡¡it¡¡contained¡¡these¡¡in¡¡potentiality£º¡¡the¡¡further¡¡question¡¡remains£»¡¡in¡¡what¡¡manner¡¡it¡¡becomes¡¡them¡£¡¡Now¡¡Anaxagoras¡¡opposes¡¡Empedocles'¡¡view¡¡of¡¡the¡¡elements¡£¡¡Empedocles¡¡says¡¡that¡¡fire¡¡and¡¡earth¡¡and¡¡the¡¡related¡¡bodies¡¡are¡¡elementary¡¡bodies¡¡of¡¡which¡¡all¡¡things¡¡are¡¡composed£»¡¡but¡¡this¡¡Anaxagoras¡¡denies¡£¡¡His¡¡elements¡¡are¡¡the¡¡homoeomerous¡¡things£»¡¡viz¡£¡¡flesh£»¡¡bone£»¡¡and¡¡the¡¡like¡£¡¡Earth¡¡and¡¡fire¡¡are¡¡mixtures£»¡¡composed¡¡of¡¡them¡¡and¡¡all¡¡the¡¡other¡¡seeds£»¡¡each¡¡consisting¡¡of¡¡a¡¡collection¡¡of¡¡all¡¡the¡¡homoeomerous¡¡bodies£»¡¡separately¡¡invisible£»¡¡and¡¡that¡¡explains¡¡why¡¡from¡¡these¡¡two¡¡bodies¡¡all¡¡others¡¡are¡¡generated¡£¡¡£¨To¡¡him¡¡fire¡¡and¡¡aither¡¡are¡¡the¡¡same¡¡thing¡££©¡¡But¡¡since¡¡every¡¡natural¡¡body¡¡has¡¡it¡¡proper¡¡movement£»¡¡and¡¡movements¡¡are¡¡either¡¡simple¡¡or¡¡mixed£»¡¡mixed¡¡in¡¡mixed¡¡bodies¡¡and¡¡simple¡¡in¡¡simple£»¡¡there¡¡must¡¡obviously¡¡be¡¡simple¡¡bodies£»¡¡for¡¡there¡¡are¡¡simple¡¡movements¡£¡¡It¡¡is¡¡plain£»¡¡then£»¡¡that¡¡there¡¡are¡¡elements£»¡¡and¡¡why¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡4
¡¡¡¡The¡¡next¡¡question¡¡to¡¡consider¡¡is¡¡whether¡¡the¡¡elements¡¡are¡¡finite¡¡or¡¡infinite¡¡in¡¡number£»¡¡and£»¡¡if¡¡finite£»¡¡what¡¡their¡¡number¡¡is¡£¡¡Let¡¡us¡¡first¡¡show¡¡reason¡¡or¡¡denying¡¡that¡¡their¡¡number¡¡is¡¡infinite£»¡¡as¡¡some¡¡suppose¡£¡¡We¡¡begin¡¡with¡¡the¡¡view¡¡of¡¡Anaxagoras¡¡that¡¡all¡¡the¡¡homoeomerous¡¡bodies¡¡are¡¡elements¡£¡¡Any¡¡one¡¡who¡¡adopts¡¡this¡¡view¡¡misapprehends¡¡the¡¡meaning¡¡of¡¡element¡£¡¡Observation¡¡shows¡¡that¡¡even¡¡mixed¡¡bodies¡¡are¡¡often¡¡divisible¡¡into¡¡homoeomerous¡¡parts£»¡¡examples¡¡are¡¡flesh£»¡¡bone£»¡¡wood£»¡¡and¡¡stone¡£¡¡Since¡¡then¡¡the¡¡composite¡¡cannot¡¡be¡¡an¡¡element£»¡¡not¡¡every¡¡homoeomerous¡¡body¡¡can¡¡be¡¡an¡¡element£»¡¡only£»¡¡as¡¡we¡¡said¡¡before£»¡¡that¡¡which¡¡is¡¡not¡¡divisible¡¡into¡¡bodies¡¡different¡¡in¡¡form¡£¡¡But¡¡even¡¡taking¡¡'element'¡¡as¡¡they¡¡do£»¡¡they¡¡need¡¡not¡¡assert¡¡an¡¡infinity¡¡of¡¡elements£»¡¡since¡¡the¡¡hypothesis¡¡of¡¡a¡¡finite¡¡number¡¡will¡¡give¡¡identical¡¡results¡£¡¡Indeed¡¡even¡¡two¡¡or¡¡three¡¡such¡¡bodies¡¡serve¡¡the¡¡purpose¡¡as¡¡well£»¡¡as¡¡Empedocles'¡¡attempt¡¡shows¡£¡¡Again£»¡¡even¡¡on¡¡their¡¡view¡¡it¡¡turns¡¡out¡¡that¡¡all¡¡things¡¡are¡¡not¡¡composed¡¡of¡¡homocomerous¡¡bodies¡£¡¡They¡¡do¡¡not¡¡pretend¡¡that¡¡a¡¡face¡¡is¡¡composed¡¡of¡¡faces£»¡¡or¡¡that¡¡any¡¡other¡¡natural¡¡conformation¡¡is¡¡composed¡¡of¡¡parts¡¡like¡¡itself¡£¡¡Obviously¡¡then¡¡it¡¡would¡¡be¡¡better¡¡to¡¡assume¡¡a¡¡finite¡¡number¡¡of¡¡principles¡£¡¡They¡¡should£»¡¡in¡¡fact£»¡¡be¡¡as¡¡few¡¡as¡¡possible£»¡¡consistently¡¡with¡¡proving¡¡what¡¡has¡¡to¡¡be¡¡proved¡£¡¡This¡¡is¡¡the¡¡common¡¡demand¡¡of¡¡mathematicians£»¡¡who¡¡always¡¡assume¡¡as¡¡principles¡¡things¡¡finite¡¡either¡¡in¡¡kind¡¡or¡¡in¡¡number¡£¡¡Again£»¡¡if¡¡body¡¡is¡¡distinguished¡¡from¡¡body¡¡by¡¡the¡¡appropriate¡¡qualitative¡¡difference£»¡¡and¡¡there¡¡is¡¡a¡¡limit¡¡to¡¡the¡¡number¡¡of¡¡differences¡¡£¨for¡¡the¡¡difference¡¡lies¡¡in¡¡qualities¡¡apprehended¡¡by¡¡sense£»¡¡which¡¡are¡¡in¡¡fact¡¡finite¡¡in¡¡number£»¡¡though¡¡this¡¡requires¡¡proof£©£»¡¡then¡¡manifestly¡¡there¡¡is¡¡necessarily¡¡a¡¡limit¡¡to¡¡the¡¡number¡¡of¡¡elements¡£¡¡¡¡¡¡There¡¡is£»¡¡further£»¡¡another¡¡view¡that¡¡of¡¡Leucippus¡¡and¡¡Democritus¡¡of¡¡Abdera¡the¡¡implications¡¡of¡¡which¡¡are¡¡also¡¡unacceptable¡£¡¡The¡¡primary¡¡masses£»¡¡according¡¡to¡¡them£»¡¡are¡¡infinite¡¡in¡¡number¡¡and¡¡indivisible¡¡in¡¡mass£º¡¡one¡¡cannot¡¡turn¡¡into¡¡many¡¡nor¡¡many¡¡into¡¡one£»¡¡and¡¡all¡¡things¡¡are¡¡generated¡¡by¡¡their¡¡combination¡¡and¡¡involution¡£¡¡Now¡¡this¡¡view¡¡in¡¡a¡¡sense¡¡makes¡¡things¡¡out¡¡to¡¡be¡¡numbers¡¡or¡¡composed¡¡of¡¡numbers¡£¡¡The¡¡exposition¡¡is¡¡not¡¡clear£»¡¡but¡¡this¡¡is¡¡its¡¡real¡¡meaning¡£¡¡And¡¡further£»¡¡they¡¡say¡¡that¡¡since¡¡the¡¡atomic¡¡bodies¡¡differ¡¡in¡¡shape£»¡¡and¡¡there¡¡is¡¡an¡¡infinity¡¡of¡¡shapes£»¡¡there¡¡is¡¡an¡¡infinity¡¡of¡¡simple¡¡bodies¡£¡¡But¡¡they¡¡have¡¡never¡¡explained¡¡in¡¡detail¡¡the¡¡shapes¡¡of¡¡the¡¡various¡¡elements£»¡¡except¡¡so¡¡far¡¡to¡¡allot¡¡the¡¡sphere¡¡to¡¡fire¡£¡¡Air£»¡¡water£»¡¡and¡¡the¡¡rest¡¡they¡¡distinguished¡¡by¡¡the¡¡relative¡¡size¡¡of¡¡the¡¡atom£»¡¡assuming¡¡that¡¡the¡¡atomic¡¡substance¡¡was¡¡a¡¡sort¡¡of¡¡master¡seed¡¡for¡¡each¡¡and¡¡every¡¡element¡£¡¡Now£»¡¡in¡¡the¡¡first¡¡place£»¡¡they¡¡make¡¡the¡¡mistake¡¡already¡¡noticed¡£¡¡The¡¡principles¡¡which¡¡they¡¡assume¡¡are¡¡not¡¡limited¡¡in¡¡number£»¡¡though¡¡such¡¡limitation¡¡would¡¡necessitate¡¡no¡¡other¡¡alteration¡¡in¡¡their¡¡theory¡£¡¡Further£»¡¡if¡¡the¡¡differences¡¡of¡¡bodies¡¡are¡¡not¡¡infinite£»¡¡plainly¡¡the¡¡elements¡¡will¡¡not¡¡be¡¡an¡¡infinity¡£¡¡Besides£»¡¡a¡¡view¡¡which¡¡asserts¡¡atomic¡¡bodies¡¡must¡¡needs¡¡come¡¡into¡¡conflict¡¡with¡¡the¡¡mathematical¡¡sciences£»¡¡in¡¡addition¡¡to¡¡invalidating¡¡many¡¡common¡¡opinions¡¡and¡¡apparent¡¡data¡¡of¡¡sense¡¡per