°Ëϲµç×ÓÊé > ¾­¹ÜÆäËûµç×ÓÊé > on the heavens >

µÚ3²¿·Ö

on the heavens-µÚ3²¿·Ö

С˵£º on the heavens ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡



is¡¡an¡¡impossibility¡£¡¡Yet¡¡our¡¡eyes¡¡tell¡¡us¡¡that¡¡the¡¡heavens¡¡revolve¡¡in¡¡a¡¡circle£»¡¡and¡¡by¡¡argument¡¡also¡¡we¡¡have¡¡determined¡¡that¡¡there¡¡is¡¡something¡¡to¡¡which¡¡circular¡¡movement¡¡belongs¡£¡¡¡¡¡¡£¨2£©¡¡Again£»¡¡if¡¡from¡¡a¡¡finite¡¡time¡¡a¡¡finite¡¡time¡¡be¡¡subtracted£»¡¡what¡¡remains¡¡must¡¡be¡¡finite¡¡and¡¡have¡¡a¡¡beginning¡£¡¡And¡¡if¡¡the¡¡time¡¡of¡¡a¡¡journey¡¡has¡¡a¡¡beginning£»¡¡there¡¡must¡¡be¡¡a¡¡beginning¡¡also¡¡of¡¡the¡¡movement£»¡¡and¡¡consequently¡¡also¡¡of¡¡the¡¡distance¡¡traversed¡£¡¡This¡¡applies¡¡universally¡£¡¡Take¡¡a¡¡line£»¡¡ACE£»¡¡infinite¡¡in¡¡one¡¡direction£»¡¡E£»¡¡and¡¡another¡¡line£»¡¡BB£»¡¡infinite¡¡in¡¡both¡¡directions¡£¡¡Let¡¡ACE¡¡describe¡¡a¡¡circle£»¡¡revolving¡¡upon¡¡C¡¡as¡¡centre¡£¡¡In¡¡its¡¡movement¡¡it¡¡will¡¡cut¡¡BB¡¡continuously¡¡for¡¡a¡¡certain¡¡time¡£¡¡This¡¡will¡¡be¡¡a¡¡finite¡¡time£»¡¡since¡¡the¡¡total¡¡time¡¡is¡¡finite¡¡in¡¡which¡¡the¡¡heavens¡¡complete¡¡their¡¡circular¡¡orbit£»¡¡and¡¡consequently¡¡the¡¡time¡¡subtracted¡¡from¡¡it£»¡¡during¡¡which¡¡the¡¡one¡¡line¡¡in¡¡its¡¡motion¡¡cuts¡¡the¡¡other£»¡¡is¡¡also¡¡finite¡£¡¡Therefore¡¡there¡¡will¡¡be¡¡a¡¡point¡¡at¡¡which¡¡ACE¡¡began¡¡for¡¡the¡¡first¡¡time¡¡to¡¡cut¡¡BB¡£¡¡This£»¡¡however£»¡¡is¡¡impossible¡£¡¡The¡¡infinite£»¡¡then£»¡¡cannot¡¡revolve¡¡in¡¡a¡¡circle£»¡¡nor¡¡could¡¡the¡¡world£»¡¡if¡¡it¡¡were¡¡infinite¡£¡¡¡¡¡¡£¨3£©¡¡That¡¡the¡¡infinite¡¡cannot¡¡move¡¡may¡¡also¡¡be¡¡shown¡¡as¡¡follows¡£¡¡Let¡¡A¡¡be¡¡a¡¡finite¡¡line¡¡moving¡¡past¡¡the¡¡finite¡¡line£»¡¡B¡£¡¡Of¡¡necessity¡¡A¡¡will¡¡pass¡¡clear¡¡of¡¡B¡¡and¡¡B¡¡of¡¡A¡¡at¡¡the¡¡same¡¡moment£»¡¡for¡¡each¡¡overlaps¡¡the¡¡other¡¡to¡¡precisely¡¡the¡¡same¡¡extent¡£¡¡Now¡¡if¡¡the¡¡two¡¡were¡¡both¡¡moving£»¡¡and¡¡moving¡¡in¡¡contrary¡¡directions£»¡¡they¡¡would¡¡pass¡¡clear¡¡of¡¡one¡¡another¡¡more¡¡rapidly£»¡¡if¡¡one¡¡were¡¡still¡¡and¡¡the¡¡other¡¡moving¡¡past¡¡it£»¡¡less¡¡rapidly£»¡¡provided¡¡that¡¡the¡¡speed¡¡of¡¡the¡¡latter¡¡were¡¡the¡¡same¡¡in¡¡both¡¡cases¡£¡¡This£»¡¡however£»¡¡is¡¡clear£º¡¡that¡¡it¡¡is¡¡impossible¡¡to¡¡traverse¡¡an¡¡infinite¡¡line¡¡in¡¡a¡¡finite¡¡time¡£¡¡Infinite¡¡time£»¡¡then£»¡¡would¡¡be¡¡required¡£¡¡£¨This¡¡we¡¡demonstrated¡¡above¡¡in¡¡the¡¡discussion¡¡of¡¡movement¡££©¡¡And¡¡it¡¡makes¡¡no¡¡difference¡¡whether¡¡a¡¡finite¡¡is¡¡passing¡¡by¡¡an¡¡infinite¡¡or¡¡an¡¡infinite¡¡by¡¡a¡¡finite¡£¡¡For¡¡when¡¡A¡¡is¡¡passing¡¡B£»¡¡then¡¡B¡¡overlaps¡¡A¡¡and¡¡it¡¡makes¡¡no¡¡difference¡¡whether¡¡B¡¡is¡¡moved¡¡or¡¡unmoved£»¡¡except¡¡that£»¡¡if¡¡both¡¡move£»¡¡they¡¡pass¡¡clear¡¡of¡¡one¡¡another¡¡more¡¡quickly¡£¡¡It¡¡is£»¡¡however£»¡¡quite¡¡possible¡¡that¡¡a¡¡moving¡¡line¡¡should¡¡in¡¡certain¡¡cases¡¡pass¡¡one¡¡which¡¡is¡¡stationary¡¡quicker¡¡than¡¡it¡¡passes¡¡one¡¡moving¡¡in¡¡an¡¡opposite¡¡direction¡£¡¡One¡¡has¡¡only¡¡to¡¡imagine¡¡the¡¡movement¡¡to¡¡be¡¡slow¡¡where¡¡both¡¡move¡¡and¡¡much¡¡faster¡¡where¡¡one¡¡is¡¡stationary¡£¡¡To¡¡suppose¡¡one¡¡line¡¡stationary£»¡¡then£»¡¡makes¡¡no¡¡difficulty¡¡for¡¡our¡¡argument£»¡¡since¡¡it¡¡is¡¡quite¡¡possible¡¡for¡¡A¡¡to¡¡pass¡¡B¡¡at¡¡a¡¡slower¡¡rate¡¡when¡¡both¡¡are¡¡moving¡¡than¡¡when¡¡only¡¡one¡¡is¡£¡¡If£»¡¡therefore£»¡¡the¡¡time¡¡which¡¡the¡¡finite¡¡moving¡¡line¡¡takes¡¡to¡¡pass¡¡the¡¡other¡¡is¡¡infinite£»¡¡then¡¡necessarily¡¡the¡¡time¡¡occupied¡¡by¡¡the¡¡motion¡¡of¡¡the¡¡infinite¡¡past¡¡the¡¡finite¡¡is¡¡also¡¡infinite¡£¡¡For¡¡the¡¡infinite¡¡to¡¡move¡¡at¡¡all¡¡is¡¡thus¡¡absolutely¡¡impossible£»¡¡since¡¡the¡¡very¡¡smallest¡¡movement¡¡conceivable¡¡must¡¡take¡¡an¡¡infinity¡¡of¡¡time¡£¡¡Moreover¡¡the¡¡heavens¡¡certainly¡¡revolve£»¡¡and¡¡they¡¡complete¡¡their¡¡circular¡¡orbit¡¡in¡¡a¡¡finite¡¡time£»¡¡so¡¡that¡¡they¡¡pass¡¡round¡¡the¡¡whole¡¡extent¡¡of¡¡any¡¡line¡¡within¡¡their¡¡orbit£»¡¡such¡¡as¡¡the¡¡finite¡¡line¡¡AB¡£¡¡The¡¡revolving¡¡body£»¡¡therefore£»¡¡cannot¡¡be¡¡infinite¡£¡¡¡¡¡¡£¨4£©¡¡Again£»¡¡as¡¡a¡¡line¡¡which¡¡has¡¡a¡¡limit¡¡cannot¡¡be¡¡infinite£»¡¡or£»¡¡if¡¡it¡¡is¡¡infinite£»¡¡is¡¡so¡¡only¡¡in¡¡length£»¡¡so¡¡a¡¡surface¡¡cannot¡¡be¡¡infinite¡¡in¡¡that¡¡respect¡¡in¡¡which¡¡it¡¡has¡¡a¡¡limit£»¡¡or£»¡¡indeed£»¡¡if¡¡it¡¡is¡¡completely¡¡determinate£»¡¡in¡¡any¡¡respect¡¡whatever¡£¡¡Whether¡¡it¡¡be¡¡a¡¡square¡¡or¡¡a¡¡circle¡¡or¡¡a¡¡sphere£»¡¡it¡¡cannot¡¡be¡¡infinite£»¡¡any¡¡more¡¡than¡¡a¡¡foot¡­rule¡¡can¡£¡¡There¡¡is¡¡then¡¡no¡¡such¡¡thing¡¡as¡¡an¡¡infinite¡¡sphere¡¡or¡¡square¡¡or¡¡circle£»¡¡and¡¡where¡¡there¡¡is¡¡no¡¡circle¡¡there¡¡can¡¡be¡¡no¡¡circular¡¡movement£»¡¡and¡¡similarly¡¡where¡¡there¡¡is¡¡no¡¡infinite¡¡at¡¡all¡¡there¡¡can¡¡be¡¡no¡¡infinite¡¡movement£»¡¡and¡¡from¡¡this¡¡it¡¡follows¡¡that£»¡¡an¡¡infinite¡¡circle¡¡being¡¡itself¡¡an¡¡impossibility£»¡¡there¡¡can¡¡be¡¡no¡¡circular¡¡motion¡¡of¡¡an¡¡infinite¡¡body¡£¡¡¡¡¡¡£¨5£©¡¡Again£»¡¡take¡¡a¡¡centre¡¡C£»¡¡an¡¡infinite¡¡line£»¡¡AB£»¡¡another¡¡infinite¡¡line¡¡at¡¡right¡¡angles¡¡to¡¡it£»¡¡E£»¡¡and¡¡a¡¡moving¡¡radius£»¡¡CD¡£¡¡CD¡¡will¡¡never¡¡cease¡¡contact¡¡with¡¡E£»¡¡but¡¡the¡¡position¡¡will¡¡always¡¡be¡¡something¡¡like¡¡CE£»¡¡CD¡¡cutting¡¡E¡¡at¡¡F¡£¡¡The¡¡infinite¡¡line£»¡¡therefore£»¡¡refuses¡¡to¡¡complete¡¡the¡¡circle¡£¡¡¡¡¡¡£¨6£©¡¡Again£»¡¡if¡¡the¡¡heaven¡¡is¡¡infinite¡¡and¡¡moves¡¡in¡¡a¡¡circle£»¡¡we¡¡shall¡¡have¡¡to¡¡admit¡¡that¡¡in¡¡a¡¡finite¡¡time¡¡it¡¡has¡¡traversed¡¡the¡¡infinite¡£¡¡For¡¡suppose¡¡the¡¡fixed¡¡heaven¡¡infinite£»¡¡and¡¡that¡¡which¡¡moves¡¡within¡¡it¡¡equal¡¡to¡¡it¡£¡¡It¡¡results¡¡that¡¡when¡¡the¡¡infinite¡¡body¡¡has¡¡completed¡¡its¡¡revolution£»¡¡it¡¡has¡¡traversed¡¡an¡¡infinite¡¡equal¡¡to¡¡itself¡¡in¡¡a¡¡finite¡¡time¡£¡¡But¡¡that¡¡we¡¡know¡¡to¡¡be¡¡impossible¡£¡¡¡¡¡¡£¨7£©¡¡It¡¡can¡¡also¡¡be¡¡shown£»¡¡conversely£»¡¡that¡¡if¡¡the¡¡time¡¡of¡¡revolution¡¡is¡¡finite£»¡¡the¡¡area¡¡traversed¡¡must¡¡also¡¡be¡¡finite£»¡¡but¡¡the¡¡area¡¡traversed¡¡was¡¡equal¡¡to¡¡itself£»¡¡therefore£»¡¡it¡¡is¡¡itself¡¡finite¡£¡¡¡¡¡¡We¡¡have¡¡now¡¡shown¡¡that¡¡the¡¡body¡¡which¡¡moves¡¡in¡¡a¡¡circle¡¡is¡¡not¡¡endless¡¡or¡¡infinite£»¡¡but¡¡has¡¡its¡¡limit¡£

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡6

¡¡¡¡Further£»¡¡neither¡¡that¡¡which¡¡moves¡¡towards¡¡nor¡¡that¡¡which¡¡moves¡¡away¡¡from¡¡the¡¡centre¡¡can¡¡be¡¡infinite¡£¡¡For¡¡the¡¡upward¡¡and¡¡downward¡¡motions¡¡are¡¡contraries¡¡and¡¡are¡¡therefore¡¡motions¡¡towards¡¡contrary¡¡places¡£¡¡But¡¡if¡¡one¡¡of¡¡a¡¡pair¡¡of¡¡contraries¡¡is¡¡determinate£»¡¡the¡¡other¡¡must¡¡be¡¡determinate¡¡also¡£¡¡Now¡¡the¡¡centre¡¡is¡¡determined£»¡¡for£»¡¡from¡¡whatever¡¡point¡¡the¡¡body¡¡which¡¡sinks¡¡to¡¡the¡¡bottom¡¡starts¡¡its¡¡downward¡¡motion£»¡¡it¡¡cannot¡¡go¡¡farther¡¡than¡¡the¡¡centre¡£¡¡The¡¡centre£»¡¡therefore£»¡¡being¡¡determinate£»¡¡the¡¡upper¡¡place¡¡must¡¡also¡¡be¡¡determinate¡£¡¡But¡¡if¡¡these¡¡two¡¡places¡¡are¡¡determined¡¡and¡¡finite£»¡¡the¡¡corresponding¡¡bodies¡¡must¡¡also¡¡be¡¡finite¡£¡¡Further£»¡¡if¡¡up¡¡and¡¡down¡¡are¡¡determinate£»¡¡the¡¡intermediate¡¡place¡¡is¡¡also¡¡necessarily¡¡determinate¡£¡¡For£»¡¡if¡¡it¡¡is¡¡indeterminate£»¡¡the¡¡movement¡¡within¡¡it¡¡will¡¡be¡¡infinite£»¡¡and¡¡that¡¡we¡¡have¡¡already¡¡shown¡¡to¡¡be¡¡an¡¡impossibility¡£¡¡The¡¡middle¡¡region¡¡then¡¡is¡¡determinate£»¡¡and¡¡consequently¡¡any¡¡body¡¡which¡¡either¡¡is¡¡in¡¡it£»¡¡or¡¡might¡¡be¡¡in¡¡it£»¡¡is¡¡determinate¡£¡¡But¡¡the¡¡bodies¡¡which¡¡move¡¡up¡¡and¡¡down¡¡may¡¡be¡¡in¡¡it£»¡¡since¡¡the¡¡one¡¡moves¡¡naturally¡¡away¡¡from¡¡the¡¡centre¡¡and¡¡the¡¡other¡¡towards¡¡it¡£¡¡¡¡¡¡From¡¡this¡¡alone¡¡it¡¡is¡¡clear¡¡that¡¡an¡¡infinite¡¡body¡¡is¡¡an¡¡impossibility£»¡¡but¡¡there¡¡is¡¡a¡¡further¡¡point¡£¡¡If¡¡there¡¡is¡¡no¡¡such¡¡thing¡¡as¡¡infinite¡¡weight£»¡¡then¡¡it¡¡follows¡¡that¡¡none¡¡of¡¡these¡¡bodies¡¡can¡¡be¡¡infinite¡£¡¡For¡¡the¡¡supposed¡¡infinite¡¡body¡¡would¡¡have¡¡to¡¡be¡¡infinite¡¡in¡¡weight¡£¡¡£¨The¡¡same¡¡argument¡¡applies¡¡to¡¡lightness£º¡¡for¡¡as¡¡the¡¡one¡¡supposition¡¡involves¡¡infinite¡¡weight£»¡¡so¡¡the¡¡infinity¡¡of¡¡the¡¡body¡¡which¡¡rises¡¡to¡¡the¡¡surface¡¡involves¡¡infinite¡¡lightness¡££©¡¡This¡¡is¡¡proved¡¡as¡¡follows¡£¡¡Assume¡¡the¡¡weight¡¡to¡¡be¡¡finite£»¡¡and¡¡take¡¡an¡¡infinite¡¡body£»¡¡AB£»¡¡of¡¡the¡¡weight¡¡C¡£¡¡Subtract¡¡from¡¡the¡¡infinite¡¡body¡¡a¡¡finite¡¡mass£»¡¡BD£»¡¡the¡¡weight¡¡of¡¡which¡¡shall¡¡be¡¡E¡£¡¡E¡¡then¡¡is¡¡less¡¡than¡¡C£»¡¡since¡¡it¡¡is¡¡the¡¡weight¡¡of¡¡a¡¡lesser¡¡mass¡£¡¡Suppose¡¡then¡¡that¡¡the¡¡smaller¡¡goes¡¡into¡¡the¡¡greater¡¡a¡¡certain¡¡number¡¡of¡¡times£»¡¡and¡¡take¡¡BF¡¡bearing¡¡the¡¡same¡¡proportion¡¡to¡¡BD¡¡which¡¡the¡¡greater¡¡weight¡¡bears¡¡to¡¡the¡¡smaller¡£¡¡For¡¡you¡¡may¡¡subtract¡¡as¡¡much¡¡as¡¡you¡¡please¡¡from¡¡an¡¡infinite¡£¡¡If¡¡now¡¡the¡¡masses¡¡are¡¡proportionate¡¡to¡¡the¡¡weights£»¡¡and¡¡the¡¡lesser¡¡weight¡¡is¡¡that¡¡of¡¡the¡¡lesser¡¡mass£»¡¡the¡¡greater¡¡must¡¡be¡¡that¡¡of¡¡the¡¡greater¡£¡¡The¡¡weights£»¡¡therefore£»¡¡of¡¡the¡¡finite¡¡and¡¡of¡¡the¡¡infinite¡¡body¡¡are¡¡equal¡£¡¡Again£»¡¡if¡¡the¡¡weight¡¡of¡¡a¡¡greater¡¡body¡¡is¡¡greater¡¡than¡¡that¡¡of¡¡a¡¡less£»¡¡the¡¡weight¡¡of¡¡GB¡¡will¡¡be¡¡greater¡¡than¡¡that¡¡of¡¡FB£»¡¡and¡¡thus¡¡the¡¡weight¡¡of¡¡the¡¡finite¡¡body¡¡is¡¡greater¡¡than¡¡that¡¡of¡¡the¡¡infinite¡£¡¡And£»¡¡further£»¡¡the¡¡weight¡¡of¡¡unequal¡¡masses¡¡will¡¡be¡¡the¡¡same£»¡¡since¡¡the¡¡infinite¡¡and¡¡the¡¡finite¡¡cannot¡¡be¡¡equal¡£¡¡It¡¡does¡¡not¡¡matter¡¡whether¡¡the¡¡weights¡¡are¡¡commensurable¡¡or¡¡not¡£¡¡If¡¡£¨a£©¡¡they¡¡are¡¡incommensurable¡¡the¡¡same¡¡reasoning¡¡holds¡£¡¡For¡¡instance£»¡¡suppose¡¡E¡¡multiplied¡¡by¡¡three¡¡is¡¡rather¡¡more¡¡than¡¡C£º¡¡the¡¡weight¡¡of¡¡three¡¡masses¡¡of¡¡the¡¡full¡¡size¡¡of¡¡BD¡¡will¡¡be¡¡greater¡¡than¡¡C¡£¡¡We¡¡thus¡¡arrive¡¡at¡¡the¡¡same¡¡impossibility¡¡as¡¡before¡£¡¡Again¡¡£¨b£©¡¡we¡¡may¡¡assume¡¡weights¡¡which¡¡are¡¡commensurate£»¡¡for¡¡it¡¡makes¡¡no¡¡difference¡¡whether¡¡we¡¡begin¡¡with¡¡the¡¡weight¡¡or¡¡with¡¡the¡¡mass¡£¡¡For¡¡example£»¡¡assume¡¡the¡¡weight¡¡E¡¡to¡¡be¡¡commensurate¡¡with¡¡C£»¡¡and¡¡take¡¡from¡¡the¡¡infinite¡¡mass¡¡a¡¡part¡¡BD¡¡of¡¡weight¡¡E¡£¡¡Then¡¡let¡¡a¡¡mass¡¡BF¡¡be¡¡taken¡¡having¡¡the¡¡same¡¡proportion¡¡to¡¡BD¡¡which¡¡the¡¡two¡¡weights¡¡have¡¡to¡¡one¡¡another¡£¡¡£¨For¡¡the¡¡mass¡¡being¡¡infinite¡¡you¡¡may¡¡subtract¡¡from¡¡it¡¡as¡¡much¡¡as¡¡you¡¡please¡££©¡¡These¡¡assumed¡¡bodies¡¡will¡¡be¡¡commensurate¡¡in¡¡mass¡¡and¡¡in¡¡weight¡¡alike¡£¡¡Nor¡¡again¡¡does¡¡it¡¡make¡¡any¡¡difference¡¡to¡¡our¡¡demonstration¡¡whether¡¡the¡¡total¡¡mass¡¡has¡¡its¡¡weight¡¡equally¡¡or¡¡unequally¡¡distributed¡£¡¡For¡¡it¡¡must¡¡always¡¡be¡¡Possible¡¡to¡¡take¡¡from¡¡the¡¡infinite¡¡mass¡¡a¡¡body¡¡of¡¡equal¡¡weight¡¡to¡¡BD¡¡by¡¡diminishing¡¡or¡¡increasing¡¡the¡¡size¡¡of¡¡the¡¡section¡¡to¡¡the¡¡necessary¡¡extent¡£¡¡¡¡¡¡From¡¡what¡¡we¡¡have¡¡said£»¡¡then£»¡¡it¡¡is¡¡clear¡¡that¡¡the¡¡weight¡¡of¡¡the¡¡infinite¡¡body¡¡cannot¡¡be¡¡finite¡£¡¡It¡¡must¡¡then¡¡be¡¡infinite¡£¡¡We¡¡have¡¡therefore¡¡only¡¡to¡¡show¡¡this¡¡to¡¡be¡¡impossible¡¡in¡¡order¡¡to¡¡prove¡¡an¡¡infinite¡¡body¡¡impossible¡£¡¡But¡¡the¡¡impossibility¡¡of¡¡infinite¡¡weight¡¡can¡¡be¡¡shown¡¡in¡¡the¡¡following¡¡way¡£¡¡A¡¡given¡¡weight¡¡moves¡¡a¡¡given¡¡distance¡¡in¡¡a¡¡given¡¡time£»¡¡a¡¡weight¡¡which¡¡is¡¡as¡¡great¡¡and¡¡more¡¡moves¡¡the¡¡same¡¡distance¡¡in¡¡a¡¡less¡¡time£»¡¡the¡¡times¡¡being¡¡in¡¡inverse¡¡proportion¡¡to¡¡the¡¡weights¡£¡¡For¡¡instance£»¡¡if¡¡one¡¡weight¡¡is¡¡twice¡¡another£»¡¡it¡¡will¡¡take¡¡half¡¡as¡¡long¡¡over¡¡a¡¡given¡¡movement¡£¡¡Further£»¡¡a¡¡finite¡¡weight¡¡traverses¡¡any¡¡finite¡¡distance¡¡in¡¡a¡¡finite¡¡time¡£¡¡It¡¡necessarily¡¡follows¡¡from¡¡this¡¡that¡¡infinite¡¡weight£»¡¡if¡¡there¡¡is¡¡such¡¡a¡¡thing£»¡¡being£»¡¡on¡¡the¡¡one¡¡hand£»¡¡as¡¡great¡¡and¡¡more¡¡than¡¡as¡¡great¡¡as¡¡the¡¡finite£»¡¡will¡¡move¡¡accordingly£»¡¡but¡¡being£»¡¡on¡¡the¡¡other¡¡hand£»¡¡compelled¡¡to¡¡move¡¡in¡¡a¡¡time¡¡inversely¡¡proportionate¡¡to¡¡its¡¡greatness£»¡¡cannot¡¡move¡¡at¡¡all¡£¡¡The¡¡time¡¡should¡¡be¡¡less¡¡in¡¡proportion¡¡as¡¡the¡¡weight¡¡is¡¡greater¡£¡¡But¡¡there¡¡is¡¡no¡¡proportion¡¡between¡¡the¡¡infinite¡¡and¡¡the¡¡finite£º¡¡proportion¡¡can¡¡only¡¡hold¡¡between¡¡a¡¡less¡¡and¡¡a¡¡greater¡¡finite¡¡time¡£¡¡And¡¡though¡¡you¡¡may¡¡say¡¡that¡¡the¡¡time¡¡of¡¡the¡¡movement¡¡can¡¡be¡¡continually¡¡diminished£»¡¡yet¡¡there¡¡is¡¡no¡¡minimum¡£¡¡Nor£»¡¡if¡¡there¡¡were£»¡¡would¡¡it¡¡help¡¡us¡£¡¡For¡¡some¡¡finite¡¡body¡¡could¡¡have¡¡been¡¡found¡¡greater¡¡than¡¡the¡¡given¡¡finite¡¡in¡¡the¡¡same¡¡proportion¡¡which¡¡is¡¡supposed¡¡to¡¡hold¡¡between¡¡the¡¡infinite¡¡and¡¡the¡¡given¡¡finite£»¡¡so¡¡that¡¡an¡¡infinite¡¡and¡¡a¡¡finite¡¡weight¡¡must¡¡have¡¡traversed¡¡an¡¡equal¡¡distance¡¡in¡¡equal¡¡time¡£¡¡But¡¡that¡¡is¡¡impossible¡£¡¡Again£»¡¡whatever¡¡the¡¡time£»¡¡so¡¡long¡¡as¡¡it¡¡is¡¡finite£»¡¡in¡¡which¡¡the¡¡infinite¡¡performs¡¡the¡¡motion£»¡¡a¡¡finite¡¡weight¡¡must¡¡necessarily¡¡move¡¡a¡¡certain¡¡finite¡¡distance¡¡in¡¡that¡¡same¡¡time¡£¡¡Infinite¡¡weight¡¡is¡¡therefore¡¡impossible£»¡¡and¡¡the¡¡same¡¡reasoning¡¡applies¡¡also¡¡

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨0£©

Äã¿ÉÄÜϲ»¶µÄ