flatland(¸¥À³ÌØÀ¼)-µÚ17²¿·Ö
°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·ҳ£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡
at¡¡least¡¡see¡¡that£»¡¡as¡¡I¡¡rise¡¡in¡¡Space£»¡¡so¡¡mySECTIONs¡¡become¡¡smaller¡£¡¡See¡¡
now£»¡¡I¡¡will¡¡rise£»¡¡and¡¡the¡¡effect¡¡upon¡¡your¡¡eye¡¡will¡¡be¡¡that¡¡my¡¡Circle¡¡will¡¡
become¡¡smaller¡¡and¡¡smaller¡¡till¡¡it¡¡dwindles¡¡to¡¡a¡¡point¡¡and¡¡finally¡¡vanishes¡£¡¡
¡¡¡¡¡¡¡¡¡¡There¡¡was¡¡no¡¡¡¨rising¡¨¡¡that¡¡I¡¡could¡¡see£»¡¡but¡¡he¡¡diminished¡¡and¡¡finally¡¡
vanished¡£¡¡I¡¡winked¡¡once¡¡or¡¡twice¡¡to¡¡make¡¡sure¡¡that¡¡I¡¡was¡¡not¡¡dreaming¡£¡¡
But¡¡it¡¡was¡¡no¡¡dream¡£¡¡For¡¡from¡¡the¡¡depths¡¡of¡¡nowhere¡¡came¡¡forth¡¡a¡¡hollow¡¡
voiceclose¡¡to¡¡my¡¡heart¡¡it¡¡seemed¡¡¡¨Am¡¡I¡¡quite¡¡gone£¿¡¡Are¡¡you¡¡convinced¡¡
now£¿¡¡¡¡¡¡Well£»¡¡¡¡¡¡now¡¡¡¡¡¡I¡¡¡¡¡¡will¡¡¡¡¡¡gradually¡¡¡¡¡¡return¡¡¡¡¡¡to¡¡¡¡¡¡Flatland¡¡¡¡¡¡and¡¡¡¡¡¡you¡¡¡¡¡¡shall¡¡¡¡¡¡see¡¡
mySECTION¡¡become¡¡larger¡¡and¡¡larger¡£¡¨¡¡
¡¡¡¡¡¡¡¡¡¡Every¡¡reader¡¡in¡¡Spaceland¡¡will¡¡easily¡¡understand¡¡that¡¡my¡¡¡¡mysterious¡¡
Guest¡¡was¡¡speaking¡¡the¡¡language¡¡of¡¡truth¡¡and¡¡even¡¡of¡¡simplicity¡£¡¡But¡¡to¡¡
me£»¡¡proficient¡¡though¡¡I¡¡was¡¡in¡¡Flatland¡¡Mathematics£»¡¡it¡¡was¡¡by¡¡no¡¡means¡¡a¡¡
simple¡¡matter¡£¡¡The¡¡rough¡¡diagram¡¡given¡¡above¡¡will¡¡make¡¡it¡¡clear¡¡to¡¡any¡¡
Spaceland¡¡child¡¡that¡¡the¡¡Sphere£»¡¡ascending¡¡in¡¡the¡¡three¡¡positions¡¡indicated¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡62¡¡
¡¡¡Page¡¡63¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Flatland¡¡
there£»¡¡must¡¡needs¡¡have¡¡manifested¡¡himself¡¡to¡¡me£»¡¡or¡¡to¡¡any¡¡Flatlander£»¡¡as¡¡a¡¡
Circle£»¡¡¡¡¡¡at¡¡¡¡¡¡first¡¡¡¡¡¡of¡¡¡¡¡¡full¡¡¡¡¡¡size£»¡¡¡¡¡¡then¡¡¡¡small£»¡¡¡¡¡¡and¡¡¡¡¡¡at¡¡¡¡¡¡last¡¡¡¡¡¡very¡¡¡¡¡¡small¡¡¡¡¡¡indeed£»¡¡
approaching¡¡to¡¡a¡¡Point¡£¡¡But¡¡to¡¡me£»¡¡although¡¡I¡¡saw¡¡the¡¡facts¡¡before¡¡me£»¡¡the¡¡
causes¡¡¡¡¡¡were¡¡¡¡¡¡as¡¡¡¡¡¡dark¡¡¡¡¡¡as¡¡¡¡¡¡ever¡£¡¡All¡¡¡¡¡¡that¡¡¡¡¡¡I¡¡¡¡¡¡could¡¡¡¡¡¡comprehend¡¡¡¡¡¡was£»¡¡¡¡¡¡that¡¡¡¡¡¡the¡¡
Circle¡¡¡¡¡¡had¡¡¡¡¡¡made¡¡¡¡¡¡himself¡¡¡¡¡¡smaller¡¡¡¡¡¡and¡¡¡¡¡¡vanished£»¡¡¡¡and¡¡¡¡¡¡that¡¡he¡¡¡¡¡¡had¡¡now¡¡¡¡¡¡re¡¡¡
appeared¡¡and¡¡was¡¡rapidly¡¡making¡¡himself¡¡larger¡£¡¡
¡¡¡¡¡¡¡¡¡¡When¡¡¡¡¡¡he¡¡¡¡¡¡regained¡¡¡¡¡¡his¡¡¡¡¡¡original¡¡¡¡¡¡size£»¡¡¡¡¡¡he¡¡¡¡¡¡heaved¡¡¡¡¡¡a¡¡¡¡¡¡deep¡¡¡¡¡¡sigh£»¡¡¡¡¡¡for¡¡¡¡¡¡he¡¡
perceived¡¡by¡¡my¡¡silence¡¡that¡¡I¡¡had¡¡altogether¡¡failed¡¡to¡¡comprehend¡¡him¡£¡¡
And¡¡indeed¡¡I¡¡was¡¡now¡¡inclining¡¡to¡¡the¡¡belief¡¡that¡¡he¡¡must¡¡be¡¡no¡¡Circle¡¡at¡¡
all£»¡¡¡¡¡¡but¡¡¡¡¡¡some¡¡¡¡¡¡extremely¡¡¡¡¡¡clever¡¡¡¡¡¡juggler£»¡¡¡¡¡¡or¡¡¡¡¡¡else¡¡¡¡¡¡that¡¡¡¡¡¡the¡¡¡¡¡¡old¡¡¡¡¡¡wives'¡¡¡¡¡¡tales¡¡
were¡¡¡¡¡¡true£»¡¡¡¡¡¡and¡¡¡¡¡¡that¡¡¡¡¡¡after¡¡¡¡¡¡all¡¡¡¡¡¡there¡¡¡¡¡¡were¡¡¡¡¡¡such¡¡¡¡¡¡people¡¡¡¡¡¡as¡¡¡¡¡¡Enchanters¡¡¡¡¡¡and¡¡
Magicians¡£¡¡
¡¡¡¡¡¡¡¡¡¡After¡¡¡¡¡¡¡¡a¡¡¡¡long¡¡¡¡¡¡¡¡pause¡¡¡¡¡¡¡¡he¡¡¡¡muttered¡¡¡¡¡¡¡¡¡¡to¡¡¡¡himself£»¡¡¡¡¡¡¡¡¡¨One¡¡¡¡¡¡¡¡¡¡resource¡¡¡¡¡¡¡¡alone¡¡
remains£»¡¡if¡¡I¡¡am¡¡not¡¡to¡¡resort¡¡to¡¡action¡£¡¡I¡¡must¡¡try¡¡the¡¡method¡¡of¡¡Analogy¡£¡¨¡¡
Then¡¡¡¡¡¡¡¡¡¡¡¡followed¡¡¡¡¡¡¡¡¡¡a¡¡¡¡still¡¡¡¡longer¡¡¡¡¡¡¡¡silence£»¡¡¡¡¡¡after¡¡¡¡¡¡which¡¡¡¡¡¡¡¡he¡¡¡¡¡¡continued¡¡¡¡¡¡¡¡¡¡¡¡our¡¡
dialogue¡£¡¡
¡¡¡¡¡¡¡¡¡¡Sphere¡£¡¡Tell¡¡me£»¡¡Mr¡£¡¡Mathematician£»¡¡if¡¡a¡¡Point¡¡moves¡¡Northward£»¡¡and¡¡
leaves¡¡a¡¡luminous¡¡wake£»¡¡what¡¡name¡¡would¡¡you¡¡give¡¡to¡¡the¡¡wake£¿¡¡
¡¡¡¡¡¡¡¡¡¡I¡£¡¡A¡¡straight¡¡Line¡£¡¡
¡¡¡¡¡¡¡¡¡¡Sphere¡£¡¡And¡¡a¡¡straight¡¡Line¡¡has¡¡how¡¡many¡¡extremities£¿¡¡
¡¡¡¡¡¡¡¡¡¡I¡£¡¡Two¡£¡¡
¡¡¡¡¡¡¡¡¡¡Sphere¡£¡¡Now¡¡conceive¡¡the¡¡Northward¡¡straight¡¡Line¡¡moving¡¡parallel¡¡to¡¡
itself£»¡¡East¡¡and¡¡West£»¡¡so¡¡that¡¡every¡¡point¡¡in¡¡it¡¡leaves¡¡behind¡¡it¡¡the¡¡wake¡¡of¡¡
a¡¡straight¡¡Line¡£¡¡What¡¡name¡¡will¡¡you¡¡give¡¡to¡¡the¡¡Figure¡¡thereby¡¡formed£¿¡¡
We¡¡¡¡¡¡will¡¡¡¡¡¡suppose¡¡¡¡¡¡that¡¡¡¡¡¡it¡¡¡¡¡¡moves¡¡¡¡¡¡through¡¡¡¡¡¡a¡¡¡¡¡¡distance¡¡¡¡¡¡equal¡¡¡¡¡¡to¡¡¡¡¡¡the¡¡¡¡¡¡original¡¡
straight¡¡line¡£¡¡What¡¡name£»¡¡I¡¡say£¿¡¡
¡¡¡¡¡¡¡¡¡¡I¡£¡¡A¡¡square¡£¡¡
¡¡¡¡¡¡¡¡¡¡Sphere¡£¡¡And¡¡how¡¡many¡¡sides¡¡has¡¡a¡¡Square£¿¡¡How¡¡many¡¡angles£¿¡¡
¡¡¡¡¡¡¡¡¡¡I¡£¡¡Four¡¡sides¡¡and¡¡four¡¡angles¡£¡¡
¡¡¡¡¡¡¡¡¡¡Sphere¡£¡¡Now¡¡stretch¡¡your¡¡imagination¡¡a¡¡little£»¡¡and¡¡conceive¡¡a¡¡Square¡¡
in¡¡Flatland£»¡¡moving¡¡parallel¡¡to¡¡itself¡¡upward¡£¡¡
¡¡¡¡¡¡¡¡¡¡I¡£¡¡What£¿¡¡Northward£¿¡¡
¡¡¡¡¡¡¡¡¡¡Sphere¡£¡¡No£»¡¡not¡¡Northward£»¡¡upward£»¡¡out¡¡of¡¡Flatland¡¡altogether¡£¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡63¡¡
¡¡¡Page¡¡64¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Flatland¡¡
¡¡¡¡¡¡¡¡¡¡If¡¡it¡¡moved¡¡Northward£»¡¡the¡¡Southern¡¡points¡¡in¡¡the¡¡Square¡¡would¡¡have¡¡
to¡¡move¡¡through¡¡the¡¡positions¡¡previously¡¡occupied¡¡by¡¡the¡¡Northern¡¡points¡£¡¡
But¡¡that¡¡is¡¡not¡¡my¡¡meaning¡£¡¡
¡¡¡¡¡¡¡¡¡¡I¡¡mean¡¡that¡¡every¡¡Point¡¡in¡¡youfor¡¡you¡¡are¡¡a¡¡Square¡¡and¡¡will¡¡serve¡¡the¡¡
purpose¡¡of¡¡my¡¡illustrationevery¡¡Point¡¡in¡¡you£»¡¡that¡¡is¡¡to¡¡say¡¡in¡¡what¡¡you¡¡
call¡¡your¡¡inside£»¡¡is¡¡to¡¡pass¡¡upwards¡¡through¡¡Space¡¡in¡¡such¡¡a¡¡way¡¡that¡¡no¡¡
Point¡¡¡¡¡¡shall¡¡¡¡¡¡pass¡¡¡¡¡¡through¡¡¡¡¡¡the¡¡¡¡¡¡position¡¡¡¡¡¡previously¡¡¡¡¡¡occupied¡¡¡¡¡¡by¡¡¡¡¡¡any¡¡¡¡¡¡other¡¡
Point£»¡¡but¡¡each¡¡Point¡¡shall¡¡describe¡¡a¡¡straight¡¡Line¡¡of¡¡its¡¡own¡£¡¡This¡¡is¡¡all¡¡in¡¡
accordance¡¡with¡¡Analogy£»¡¡surely¡¡it¡¡must¡¡be¡¡clear¡¡to¡¡you¡£¡¡
¡¡¡¡¡¡¡¡¡¡Restraining¡¡my¡¡impatiencefor¡¡I¡¡was¡¡now¡¡under¡¡a¡¡strong¡¡temptation¡¡
to¡¡rush¡¡blindly¡¡at¡¡my¡¡Visitor¡¡and¡¡to¡¡precipitate¡¡him¡¡into¡¡Space£»¡¡or¡¡out¡¡of¡¡
Flatland£»¡¡anywhere£»¡¡so¡¡that¡¡I¡¡could¡¡get¡¡rid¡¡of¡¡himI¡¡replied£º¡¡
¡¡¡¡¡¡¡¡¡¡¡¨And¡¡what¡¡may¡¡be¡¡the¡¡nature¡¡of¡¡the¡¡Figure¡¡which¡¡I¡¡am¡¡to¡¡shape¡¡out¡¡by¡¡
this¡¡¡¡¡¡motion¡¡¡¡¡¡which¡¡¡¡¡¡you¡¡¡¡¡¡are¡¡¡¡¡¡pleased¡¡¡¡¡¡to¡¡¡¡¡¡denote¡¡¡¡¡¡by¡¡¡¡¡¡the¡¡¡¡¡¡word¡¡¡¡¡¡¡®upward'£¿¡¡¡¡¡¡I¡¡
presume¡¡it¡¡is¡¡describable¡¡in¡¡the¡¡language¡¡of¡¡Flatland¡£¡¨¡¡
¡¡¡¡¡¡¡¡¡¡Sphere¡£¡¡¡¡¡¡¡¡¡¡Oh£»¡¡¡¡¡¡¡¡certainly¡£¡¡¡¡¡¡It¡¡¡¡is¡¡¡¡all¡¡¡¡plain¡¡¡¡¡¡and¡¡¡¡¡¡simple£»¡¡¡¡¡¡¡¡and¡¡¡¡¡¡in¡¡¡¡¡¡strict¡¡
accordance¡¡¡¡¡¡with¡¡Analogyonly£»¡¡¡¡¡¡by¡¡¡¡¡¡the¡¡¡¡¡¡way£»¡¡¡¡¡¡you¡¡¡¡¡¡must¡¡¡¡¡¡not¡¡¡¡¡¡speak¡¡¡¡¡¡of¡¡¡¡¡¡the¡¡
result¡¡as¡¡being¡¡a¡¡Figure£»¡¡but¡¡as¡¡a¡¡Solid¡£¡¡But¡¡I¡¡will¡¡describe¡¡it¡¡to¡¡you¡£¡¡Or¡¡
rather¡¡not¡¡I£»¡¡but¡¡Analogy¡£¡¡
¡¡¡¡¡¡¡¡¡¡We¡¡began¡¡with¡¡a¡¡single¡¡Point£»¡¡which¡¡of¡¡coursebeing¡¡itself¡¡a¡¡Point¡¡
has¡¡only¡¡ONE¡¡terminal¡¡Point¡£¡¡
¡¡¡¡¡¡¡¡¡¡One¡¡Point¡¡produces¡¡a¡¡Line¡¡with¡¡TWO¡¡terminal¡¡Points¡£¡¡
¡¡¡¡¡¡¡¡¡¡One¡¡Line¡¡produces¡¡a¡¡Square¡¡with¡¡FOUR¡¡terminal¡¡Points¡£¡¡
¡¡¡¡¡¡¡¡¡¡Now¡¡you¡¡can¡¡give¡¡yourself¡¡the¡¡answer¡¡to¡¡your¡¡own¡¡question£º¡¡1£»¡¡2£»¡¡4£»¡¡
are¡¡evidently¡¡in¡¡Geometrical¡¡Progression¡£¡¡What¡¡is¡¡the¡¡next¡¡number£¿¡¡
¡¡¡¡¡¡¡¡¡¡I¡£¡¡Eight¡£¡¡
¡¡¡¡¡¡¡¡¡¡Sphere¡£¡¡Exactly¡£¡¡The¡¡one¡¡Square¡¡produces¡¡a¡¡SOMETHING¡WHICH¡¡¡
YOU¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡DO¡NOT¡AS¡YET¡KNOW¡A¡NAME¡FOR¡BUT¡WHICH¡WE¡¡¡
CALL¡A¡CUBE¡¡with¡¡EIGHT¡¡terminal¡¡Points¡£¡¡Now¡¡are¡¡you¡¡convinced£¿¡¡
¡¡¡¡¡¡¡¡¡¡I¡£¡¡¡¡¡¡And¡¡¡¡¡¡has¡¡¡¡¡¡this¡¡¡¡¡¡Creature¡¡¡¡¡¡sides£»¡¡¡¡¡¡as¡¡¡¡¡¡well¡¡¡¡¡¡as¡¡¡¡¡¡Angles¡¡¡¡¡¡or¡¡¡¡¡¡what¡¡¡¡¡¡you¡¡¡¡¡¡call¡¡
¡¨terminal¡¡Points¡¨£¿¡¡
¡¡¡¡¡¡¡¡¡¡Sphere¡£¡¡Of¡¡course£»¡¡and¡¡all¡¡according¡¡to¡¡Analogy¡£¡¡But£»¡¡by¡¡the¡¡way£»¡¡not¡¡
what¡¡¡¡¡¡¡¡YOU¡¡¡¡¡¡¡¡¡¡¡¡call¡¡¡¡sides£»¡¡¡¡but¡¡¡¡what¡¡¡¡¡¡¡¡WE¡¡¡¡¡¡¡¡call¡¡¡¡sides¡£¡¡¡¡You¡¡¡¡¡¡¡¡would¡¡¡¡¡¡¡¡call¡¡¡¡them¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡64¡¡
¡¡¡Page¡¡65¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Flatland¡¡
SOLIDS¡£¡¡
¡¡¡¡¡¡¡¡¡¡I¡£¡¡And¡¡how¡¡many¡¡solids¡¡or¡¡sides¡¡will¡¡appertain¡¡to¡¡this¡¡Being¡¡whom¡¡I¡¡
am¡¡to¡¡generate¡¡by¡¡the¡¡motion¡¡of¡¡my¡¡inside¡¡in¡¡an¡¡¡¨upward¡¨¡¡direction£»¡¡and¡¡
whom¡¡you¡¡call¡¡a¡¡Cube£¿¡¡
¡¡¡¡¡¡¡¡¡¡Sphere¡£¡¡¡¡¡¡How¡¡¡¡¡¡can¡¡¡¡¡¡you¡¡¡¡¡¡ask£¿¡¡¡¡¡¡And¡¡¡¡¡¡you¡¡¡¡¡¡a¡¡¡¡¡¡mathematician£¡¡¡¡¡¡¡The¡¡¡¡¡¡side¡¡¡¡¡¡of¡¡
anything¡¡¡¡¡¡is¡¡¡¡¡¡always£»¡¡¡¡¡¡if¡¡¡¡¡¡I¡¡¡¡¡¡may¡¡¡¡¡¡so¡¡¡¡¡¡say£»¡¡¡¡¡¡one¡¡¡¡¡¡Dimension¡¡¡¡¡¡behind¡¡¡¡¡¡the¡¡¡¡¡¡thing¡£¡¡
Consequently£»¡¡as¡¡there¡¡is¡¡no¡¡Dimension¡¡behind¡¡a¡¡Point£»¡¡a¡¡Point¡¡has¡¡0¡¡sides£»¡¡
a¡¡Line£»¡¡if¡¡I¡¡may¡¡so¡¡say£»¡¡has¡¡2¡¡sides¡¡£¨for¡¡the¡¡points¡¡of¡¡a¡¡Line¡¡may¡¡be¡¡called¡¡
by¡¡courtesy£»¡¡its¡¡sides£©£»¡¡a¡¡Square¡¡has¡¡4¡¡sides£»¡¡0£»¡¡2£»¡¡4£»¡¡what¡¡Progression¡¡do¡¡
you¡¡call¡¡that£¿¡¡
¡¡¡¡¡¡¡¡¡¡I¡£¡¡Arithmetical¡£¡¡
¡¡¡¡¡¡¡¡¡¡Sphere¡£¡¡And¡¡what¡¡is¡¡the¡¡next¡¡number£¿¡¡
¡¡¡¡¡¡¡¡¡¡I¡£¡¡Six¡£¡¡
¡¡¡¡¡¡¡¡¡¡Sphere¡£¡¡Exactly¡£¡¡Then¡¡you¡¡see¡¡you¡¡have¡¡answered¡¡your¡¡own¡¡question¡£¡¡
The¡¡Cube¡¡which¡¡you¡¡will¡¡generate¡¡will¡¡be¡¡bounded¡¡by¡¡six¡¡sides£»¡¡that¡¡is¡¡to¡¡
say£»¡¡six¡¡of¡¡your¡¡insides¡£¡¡You¡¡see¡¡it¡¡all¡¡now£»¡¡eh£¿¡¡
¡¡¡¡¡¡¡¡¡¡¡¨Monster£»¡¨¡¡I¡¡shrieked£»¡¡¡¨be¡¡thou¡¡juggler£»¡¡enchanter£»¡¡dream£»¡¡or¡¡devil£»¡¡no¡¡
more¡¡¡¡¡¡will¡¡¡¡¡¡I¡¡¡¡¡¡endure¡¡¡¡¡¡thy¡¡¡¡¡¡mockeries¡£¡¡¡¡¡¡Either¡¡¡¡¡¡thou¡¡¡¡¡¡or¡¡¡¡¡¡I¡¡¡¡¡¡must¡¡¡¡¡¡perish¡£¡¨¡¡¡¡¡¡And¡¡
saying¡¡these¡¡words¡¡I¡¡precipitated¡¡myself¡¡upon¡¡him¡£¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡65¡¡
¡¡¡Page¡¡66¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Flatland¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡SECTION¡¡17¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡How¡¡the¡¡Sphere£»¡¡having¡¡in¡¡vain¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡tried¡¡words£»¡¡resorted¡¡to¡¡deeds¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡It¡¡was¡¡in¡¡vain¡£¡¡I¡¡brought¡¡my¡¡hardest¡¡right¡¡angle¡¡into¡¡violent¡¡collision¡¡
with¡¡¡¡¡¡¡¡the¡¡¡¡¡¡Stranger£»¡¡¡¡¡¡¡¡pressing¡¡¡¡¡¡¡¡on¡¡¡¡¡¡him¡¡¡¡¡¡¡¡with¡¡¡¡¡¡a¡¡¡¡force¡¡¡¡¡¡sufficient¡¡¡¡¡¡¡¡to¡¡¡¡have¡¡
destroyed¡¡¡¡¡¡¡¡¡¡¡¡any¡¡¡¡¡¡¡¡ordinary¡¡¡¡¡¡¡¡¡¡Circle£º¡¡¡¡¡¡but¡¡¡¡¡¡¡¡I¡¡¡¡could¡¡¡¡¡¡¡¡feel¡¡¡¡¡¡him¡¡¡¡¡¡¡¡slowly¡¡¡¡¡¡¡¡and¡¡
unarrestably¡¡slipping¡¡from¡¡my¡¡contact£»¡¡not¡¡edging¡¡to¡¡the¡¡right¡¡nor¡¡to¡¡the¡¡
left£»¡¡but¡¡¡¡¡¡moving¡¡somehow¡¡out¡¡¡¡¡¡of¡¡the¡¡¡¡¡¡world£»¡¡¡¡and¡¡vanishing¡¡¡¡¡¡into¡¡¡¡¡¡nothing¡£¡¡
Soon¡¡there¡¡was¡¡a¡¡blank¡£¡¡But¡¡still¡¡I¡¡heard¡¡the¡¡Intruder's¡¡voice¡£¡¡
¡¡¡¡¡¡¡¡¡¡Sphere¡£¡¡Why¡¡will¡¡you¡¡refuse¡¡to¡¡listen¡¡to¡¡reason£¿¡¡I¡¡had¡¡hoped¡¡to¡¡find¡¡in¡¡
youas¡¡being¡¡a¡¡man¡¡of¡¡sense¡¡and¡¡an¡¡accomplished¡¡mathematician¡¡a¡¡fit¡¡
apostle¡¡¡¡¡¡for¡¡¡¡¡¡the¡¡¡¡¡¡Gospel¡¡¡¡¡¡of¡¡¡¡¡¡the¡¡Three¡¡¡¡¡¡Dimensions£»¡¡¡¡¡¡which¡¡¡¡¡¡I¡¡¡¡¡¡am¡¡¡¡allowed¡¡¡¡¡¡to¡¡
preach¡¡once¡¡only¡¡in¡¡a¡¡thousand¡¡years£º¡¡but¡¡now¡¡I¡¡know¡¡not¡¡how¡¡to¡¡convince¡¡
you¡£¡¡Stay£»¡¡I¡¡have¡¡it¡£¡¡Deeds£»¡¡and¡¡not¡¡words£»¡¡shall¡¡proclaim¡¡the¡¡truth¡£¡¡Listen£»¡¡
my¡¡friend¡£¡¡
¡¡¡¡¡¡¡¡¡¡I¡¡have¡¡told¡¡you¡¡I¡¡can¡¡see¡¡from¡¡my¡¡position¡¡in¡¡Space¡¡the¡¡inside¡¡of¡¡all¡¡
things¡¡¡¡¡¡that¡¡¡¡¡¡you¡¡¡¡¡¡consider¡¡¡¡¡¡closed¡£¡¡¡¡¡¡For¡¡¡¡¡¡example£»¡¡¡¡¡¡I¡¡¡¡¡¡see¡¡¡¡¡¡in¡¡¡¡¡¡yonder¡¡¡¡¡¡cupboard¡¡
near¡¡¡¡¡¡which¡¡¡¡¡¡you¡¡¡¡¡¡are¡¡¡¡¡¡standing£»¡¡¡¡¡¡several¡¡¡¡¡¡of¡¡¡¡¡¡what¡¡¡¡¡¡you¡¡¡¡¡¡call¡¡¡¡¡¡boxes¡¡¡¡¡¡£¨but¡¡¡¡¡¡like¡¡
everything¡¡else¡¡in¡¡Flatland£»¡¡they¡¡have¡¡no¡¡tops¡¡or¡¡bottom£©¡¡full¡¡of¡¡money£»¡¡I¡¡
see¡¡also¡¡two¡¡tablets¡¡of¡¡accounts¡£¡¡I¡¡am¡¡about¡¡to¡¡descend¡¡into¡¡that¡¡cupboard¡¡
and¡¡to¡¡bring¡¡you¡¡one¡¡of¡¡those¡¡tablets¡£¡¡I¡¡saw¡¡you¡¡lock¡¡the¡¡cupboard¡¡half¡¡an¡¡
hour¡¡ago£»¡¡and¡¡I¡¡know¡¡you¡¡have¡¡the¡¡key¡¡in¡¡your¡¡possession¡£¡¡But¡¡I¡¡descend¡¡
from¡¡¡¡¡¡¡¡¡¡Space£»¡¡¡¡¡¡¡¡the¡¡¡¡doors£»¡¡¡¡¡¡you¡¡¡¡¡¡see£»¡¡¡¡¡¡remain¡¡¡¡¡¡¡¡unmoved¡£¡¡¡¡¡¡¡¡¡¡¡¡Now¡¡¡¡¡¡¡¡I¡¡¡¡am¡¡¡¡¡¡in¡¡¡¡the¡¡
cupboard¡¡and¡¡am¡¡taking¡¡the¡¡tablet¡£¡¡Now¡¡I¡¡have¡¡it¡£¡¡Now¡¡I¡¡ascent¡¡with¡¡it¡£¡¡
¡¡¡¡¡¡¡¡¡¡I¡¡rushed¡¡to¡¡the¡¡closet¡¡and¡¡dashed¡¡the¡¡door¡¡open¡£¡¡One¡¡of¡¡the¡¡tablets¡¡was¡¡
gone¡£¡¡With¡¡a¡¡mocking¡¡laugh£»¡¡the¡¡Stranger¡¡appeared¡¡in¡¡the¡¡other¡¡corner¡¡of¡¡
the¡¡room£»¡¡and¡¡at¡¡the¡¡same¡¡time¡¡the¡¡tablet¡¡appeared¡¡upon¡¡the¡¡floor¡£¡¡I¡¡took¡¡it¡¡
up¡£¡¡There¡¡could¡¡be¡¡no¡¡doubtit¡¡was¡¡the¡¡missing¡¡tablet¡£¡¡
¡¡¡¡¡¡¡¡¡¡I¡¡groaned¡¡with¡¡horror£»¡¡doubting¡¡whether¡¡I¡¡was¡¡not¡¡out¡¡of¡¡my¡¡sense£»¡¡but¡¡
the¡¡¡¡¡¡Stranger¡¡¡¡¡¡continued£º¡¡¡¡¡¡¡¨Surely¡¡¡¡¡¡you¡¡¡¡¡¡must¡¡¡¡¡¡now¡¡¡¡¡¡see¡¡¡¡¡¡that¡¡¡¡¡¡my¡¡¡¡¡¡explanation£»¡¡
and¡¡no¡¡other£»¡¡suits¡¡the¡¡phenomena¡£¡¡What¡¡you¡¡call¡¡Solid¡¡things¡¡are¡¡really¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡66¡¡
¡¡¡Page¡¡67¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Flatland¡¡
superficial£»¡¡what¡¡you¡¡call¡¡Space¡¡is¡¡really¡¡nothing¡¡but¡¡a¡¡great¡¡Plane¡£¡¡I¡¡am¡¡in¡¡
Space£»¡¡and¡¡look¡¡down¡¡upon¡¡the¡¡insides¡¡of¡¡the¡¡things¡¡of¡¡which¡¡you¡¡only¡¡see¡¡
the¡¡outsides¡£¡¡You¡¡could¡¡leave¡¡the¡¡Plane¡¡yourself£»¡¡if¡¡you¡¡could¡¡but¡¡summon¡¡
up¡¡¡¡¡¡the¡¡¡¡¡¡necessary¡¡¡¡¡¡volition¡£¡¡¡¡A¡¡¡¡slight¡¡¡¡¡¡upward¡¡¡¡¡¡or¡¡¡¡¡¡downward¡¡¡¡¡¡motion¡¡¡¡¡¡would¡¡
enable¡¡you¡¡to¡¡see¡¡all¡¡that¡¡I¡¡can¡¡see¡£¡¡
¡¡¡¡¡¡¡¡¡¡¡¨The¡¡higher¡¡I¡¡mount£»¡¡and¡¡the¡¡further¡¡I¡¡go¡¡from¡¡your¡¡Plane£»¡¡the¡¡more¡¡I¡¡
can¡¡see£»¡¡though¡¡of¡¡course¡¡I¡¡see¡¡it¡¡on¡¡a¡¡smaller¡¡sc