°Ëϲµç×ÓÊé > ¾­¹ÜÆäËûµç×ÓÊé > prior analytics >

µÚ14²¿·Ö

prior analytics-µÚ14²¿·Ö

С˵£º prior analytics ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡






For¡¡the¡¡inquiry¡¡will¡¡be¡¡the¡¡same£»¡¡and¡¡the¡¡syllogism¡¡will¡¡proceed



through¡¡terms¡¡arranged¡¡in¡¡the¡¡same¡¡order¡¡whether¡¡a¡¡possible¡¡or¡¡a



pure¡¡proposition¡¡is¡¡proved¡£¡¡We¡¡must¡¡find¡¡in¡¡the¡¡case¡¡of¡¡possible



relations£»¡¡as¡¡well¡¡as¡¡terms¡¡that¡¡belong£»¡¡terms¡¡which¡¡can¡¡belong¡¡though



they¡¡actually¡¡do¡¡not£º¡¡for¡¡we¡¡have¡¡proved¡¡that¡¡the¡¡syllogism¡¡which



establishes¡¡a¡¡possible¡¡relation¡¡proceeds¡¡through¡¡these¡¡terms¡¡as



well¡£¡¡Similarly¡¡also¡¡with¡¡the¡¡other¡¡modes¡¡of¡¡predication¡£



¡¡¡¡It¡¡is¡¡clear¡¡then¡¡from¡¡what¡¡has¡¡been¡¡said¡¡not¡¡only¡¡that¡¡all



syllogisms¡¡can¡¡be¡¡formed¡¡in¡¡this¡¡way£»¡¡but¡¡also¡¡that¡¡they¡¡cannot¡¡be



formed¡¡in¡¡any¡¡other¡£¡¡For¡¡every¡¡syllogism¡¡has¡¡been¡¡proved¡¡to¡¡be



formed¡¡through¡¡one¡¡of¡¡the¡¡aforementioned¡¡figures£»¡¡and¡¡these¡¡cannot



be¡¡composed¡¡through¡¡other¡¡terms¡¡than¡¡the¡¡consequents¡¡and¡¡antecedents



of¡¡the¡¡terms¡¡in¡¡question£º¡¡for¡¡from¡¡these¡¡we¡¡obtain¡¡the¡¡premisses¡¡and



find¡¡the¡¡middle¡¡term¡£¡¡Consequently¡¡a¡¡syllogism¡¡cannot¡¡be¡¡formed¡¡by



means¡¡of¡¡other¡¡terms¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡30







¡¡¡¡The¡¡method¡¡is¡¡the¡¡same¡¡in¡¡all¡¡cases£»¡¡in¡¡philosophy£»¡¡in¡¡any¡¡art¡¡or



study¡£¡¡We¡¡must¡¡look¡¡for¡¡the¡¡attributes¡¡and¡¡the¡¡subjects¡¡of¡¡both¡¡our



terms£»¡¡and¡¡we¡¡must¡¡supply¡¡ourselves¡¡with¡¡as¡¡many¡¡of¡¡these¡¡as¡¡possible£»



and¡¡consider¡¡them¡¡by¡¡means¡¡of¡¡the¡¡three¡¡terms£»¡¡refuting¡¡statements



in¡¡one¡¡way£»¡¡confirming¡¡them¡¡in¡¡another£»¡¡in¡¡the¡¡pursuit¡¡of¡¡truth



starting¡¡from¡¡premisses¡¡in¡¡which¡¡the¡¡arrangement¡¡of¡¡the¡¡terms¡¡is¡¡in



accordance¡¡with¡¡truth£»¡¡while¡¡if¡¡we¡¡look¡¡for¡¡dialectical¡¡syllogisms



we¡¡must¡¡start¡¡from¡¡probable¡¡premisses¡£¡¡The¡¡principles¡¡of¡¡syllogisms



have¡¡been¡¡stated¡¡in¡¡general¡¡terms£»¡¡both¡¡how¡¡they¡¡are¡¡characterized¡¡and



how¡¡we¡¡must¡¡hunt¡¡for¡¡them£»¡¡so¡¡as¡¡not¡¡to¡¡look¡¡to¡¡everything¡¡that¡¡is



said¡¡about¡¡the¡¡terms¡¡of¡¡the¡¡problem¡¡or¡¡to¡¡the¡¡same¡¡points¡¡whether¡¡we



are¡¡confirming¡¡or¡¡refuting£»¡¡or¡¡again¡¡whether¡¡we¡¡are¡¡confirming¡¡of



all¡¡or¡¡of¡¡some£»¡¡and¡¡whether¡¡we¡¡are¡¡refuting¡¡of¡¡all¡¡or¡¡some¡£¡¡we¡¡must



look¡¡to¡¡fewer¡¡points¡¡and¡¡they¡¡must¡¡be¡¡definite¡£¡¡We¡¡have¡¡also¡¡stated



how¡¡we¡¡must¡¡select¡¡with¡¡reference¡¡to¡¡everything¡¡that¡¡is£»¡¡e¡£g¡£¡¡about



good¡¡or¡¡knowledge¡£¡¡But¡¡in¡¡each¡¡science¡¡the¡¡principles¡¡which¡¡are



peculiar¡¡are¡¡the¡¡most¡¡numerous¡£¡¡Consequently¡¡it¡¡is¡¡the¡¡business¡¡of



experience¡¡to¡¡give¡¡the¡¡principles¡¡which¡¡belong¡¡to¡¡each¡¡subject¡£¡¡I¡¡mean



for¡¡example¡¡that¡¡astronomical¡¡experience¡¡supplies¡¡the¡¡principles¡¡of



astronomical¡¡science£º¡¡for¡¡once¡¡the¡¡phenomena¡¡were¡¡adequately



apprehended£»¡¡the¡¡demonstrations¡¡of¡¡astronomy¡¡were¡¡discovered¡£



Similarly¡¡with¡¡any¡¡other¡¡art¡¡or¡¡science¡£¡¡Consequently£»¡¡if¡¡the



attributes¡¡of¡¡the¡¡thing¡¡are¡¡apprehended£»¡¡our¡¡business¡¡will¡¡then¡¡be



to¡¡exhibit¡¡readily¡¡the¡¡demonstrations¡£¡¡For¡¡if¡¡none¡¡of¡¡the¡¡true



attributes¡¡of¡¡things¡¡had¡¡been¡¡omitted¡¡in¡¡the¡¡historical¡¡survey£»¡¡we



should¡¡be¡¡able¡¡to¡¡discover¡¡the¡¡proof¡¡and¡¡demonstrate¡¡everything



which¡¡admitted¡¡of¡¡proof£»¡¡and¡¡to¡¡make¡¡that¡¡clear£»¡¡whose¡¡nature¡¡does¡¡not



admit¡¡of¡¡proof¡£



¡¡¡¡In¡¡general¡¡then¡¡we¡¡have¡¡explained¡¡fairly¡¡well¡¡how¡¡we¡¡must¡¡select



premisses£º¡¡we¡¡have¡¡discussed¡¡the¡¡matter¡¡accurately¡¡in¡¡the¡¡treatise



concerning¡¡dialectic¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡31







¡¡¡¡It¡¡is¡¡easy¡¡to¡¡see¡¡that¡¡division¡¡into¡¡classes¡¡is¡¡a¡¡small¡¡part¡¡of



the¡¡method¡¡we¡¡have¡¡described£º¡¡for¡¡division¡¡is£»¡¡so¡¡to¡¡speak£»¡¡a¡¡weak



syllogism£»¡¡for¡¡what¡¡it¡¡ought¡¡to¡¡prove£»¡¡it¡¡begs£»¡¡and¡¡it¡¡always



establishes¡¡something¡¡more¡¡general¡¡than¡¡the¡¡attribute¡¡in¡¡question¡£



First£»¡¡this¡¡very¡¡point¡¡had¡¡escaped¡¡all¡¡those¡¡who¡¡used¡¡the¡¡method¡¡of



division£»¡¡and¡¡they¡¡attempted¡¡to¡¡persuade¡¡men¡¡that¡¡it¡¡was¡¡possible¡¡to



make¡¡a¡¡demonstration¡¡of¡¡substance¡¡and¡¡essence¡£¡¡Consequently¡¡they¡¡did



not¡¡understand¡¡what¡¡it¡¡is¡¡possible¡¡to¡¡prove¡¡syllogistically¡¡by



division£»¡¡nor¡¡did¡¡they¡¡understand¡¡that¡¡it¡¡was¡¡possible¡¡to¡¡prove



syllogistically¡¡in¡¡the¡¡manner¡¡we¡¡have¡¡described¡£¡¡In¡¡demonstrations£»



when¡¡there¡¡is¡¡a¡¡need¡¡to¡¡prove¡¡a¡¡positive¡¡statement£»¡¡the¡¡middle¡¡term



through¡¡which¡¡the¡¡syllogism¡¡is¡¡formed¡¡must¡¡always¡¡be¡¡inferior¡¡to¡¡and



not¡¡comprehend¡¡the¡¡first¡¡of¡¡the¡¡extremes¡£¡¡But¡¡division¡¡has¡¡a



contrary¡¡intention£º¡¡for¡¡it¡¡takes¡¡the¡¡universal¡¡as¡¡middle¡£¡¡Let¡¡animal



be¡¡the¡¡term¡¡signified¡¡by¡¡A£»¡¡mortal¡¡by¡¡B£»¡¡and¡¡immortal¡¡by¡¡C£»¡¡and¡¡let



man£»¡¡whose¡¡definition¡¡is¡¡to¡¡be¡¡got£»¡¡be¡¡signified¡¡by¡¡D¡£¡¡The¡¡man¡¡who



divides¡¡assumes¡¡that¡¡every¡¡animal¡¡is¡¡either¡¡mortal¡¡or¡¡immortal£º¡¡i¡£e¡£



whatever¡¡is¡¡A¡¡is¡¡all¡¡either¡¡B¡¡or¡¡C¡£¡¡Again£»¡¡always¡¡dividing£»¡¡he¡¡lays¡¡it



down¡¡that¡¡man¡¡is¡¡an¡¡animal£»¡¡so¡¡he¡¡assumes¡¡A¡¡of¡¡D¡¡as¡¡belonging¡¡to¡¡it¡£



Now¡¡the¡¡true¡¡conclusion¡¡is¡¡that¡¡every¡¡D¡¡is¡¡either¡¡B¡¡or¡¡C£»¡¡consequently



man¡¡must¡¡be¡¡either¡¡mortal¡¡or¡¡immortal£»¡¡but¡¡it¡¡is¡¡not¡¡necessary¡¡that



man¡¡should¡¡be¡¡a¡¡mortal¡¡animal¡­this¡¡is¡¡begged£º¡¡and¡¡this¡¡is¡¡what¡¡ought



to¡¡have¡¡been¡¡proved¡¡syllogistically¡£¡¡And¡¡again£»¡¡taking¡¡A¡¡as¡¡mortal



animal£»¡¡B¡¡as¡¡footed£»¡¡C¡¡as¡¡footless£»¡¡and¡¡D¡¡as¡¡man£»¡¡he¡¡assumes¡¡in¡¡the



same¡¡way¡¡that¡¡A¡¡inheres¡¡either¡¡in¡¡B¡¡or¡¡in¡¡C¡¡£¨for¡¡every¡¡mortal¡¡animal



is¡¡either¡¡footed¡¡or¡¡footless£©£»¡¡and¡¡he¡¡assumes¡¡A¡¡of¡¡D¡¡£¨for¡¡he¡¡assumed



man£»¡¡as¡¡we¡¡saw£»¡¡to¡¡be¡¡a¡¡mortal¡¡animal£©£»¡¡consequently¡¡it¡¡is¡¡necessary



that¡¡man¡¡should¡¡be¡¡either¡¡a¡¡footed¡¡or¡¡a¡¡footless¡¡animal£»¡¡but¡¡it¡¡is¡¡not



necessary¡¡that¡¡man¡¡should¡¡be¡¡footed£º¡¡this¡¡he¡¡assumes£º¡¡and¡¡it¡¡is¡¡just



this¡¡again¡¡which¡¡he¡¡ought¡¡to¡¡have¡¡demonstrated¡£¡¡Always¡¡dividing¡¡then



in¡¡this¡¡way¡¡it¡¡turns¡¡out¡¡that¡¡these¡¡logicians¡¡assume¡¡as¡¡middle¡¡the



universal¡¡term£»¡¡and¡¡as¡¡extremes¡¡that¡¡which¡¡ought¡¡to¡¡have¡¡been¡¡the



subject¡¡of¡¡demonstration¡¡and¡¡the¡¡differentiae¡£¡¡In¡¡conclusion£»¡¡they



do¡¡not¡¡make¡¡it¡¡clear£»¡¡and¡¡show¡¡it¡¡to¡¡be¡¡necessary£»¡¡that¡¡this¡¡is¡¡man¡¡or



whatever¡¡the¡¡subject¡¡of¡¡inquiry¡¡may¡¡be£º¡¡for¡¡they¡¡pursue¡¡the¡¡other



method¡¡altogether£»¡¡never¡¡even¡¡suspecting¡¡the¡¡presence¡¡of¡¡the¡¡rich



supply¡¡of¡¡evidence¡¡which¡¡might¡¡be¡¡used¡£¡¡It¡¡is¡¡clear¡¡that¡¡it¡¡is¡¡neither



possible¡¡to¡¡refute¡¡a¡¡statement¡¡by¡¡this¡¡method¡¡of¡¡division£»¡¡nor¡¡to¡¡draw



a¡¡conclusion¡¡about¡¡an¡¡accident¡¡or¡¡property¡¡of¡¡a¡¡thing£»¡¡nor¡¡about¡¡its



genus£»¡¡nor¡¡in¡¡cases¡¡in¡¡which¡¡it¡¡is¡¡unknown¡¡whether¡¡it¡¡is¡¡thus¡¡or¡¡thus£»



e¡£g¡£¡¡whether¡¡the¡¡diagonal¡¡is¡¡incommensurate¡£¡¡For¡¡if¡¡he¡¡assumes¡¡that



every¡¡length¡¡is¡¡either¡¡commensurate¡¡or¡¡incommensurate£»¡¡and¡¡the



diagonal¡¡is¡¡a¡¡length£»¡¡he¡¡has¡¡proved¡¡that¡¡the¡¡diagonal¡¡is¡¡either



incommensurate¡¡or¡¡commensurate¡£¡¡But¡¡if¡¡he¡¡should¡¡assume¡¡that¡¡it¡¡is



incommensurate£»¡¡he¡¡will¡¡have¡¡assumed¡¡what¡¡he¡¡ought¡¡to¡¡have¡¡proved¡£



He¡¡cannot¡¡then¡¡prove¡¡it£º¡¡for¡¡this¡¡is¡¡his¡¡method£»¡¡but¡¡proof¡¡is¡¡not



possible¡¡by¡¡this¡¡method¡£¡¡Let¡¡A¡¡stand¡¡for¡¡'incommensurate¡¡or



commensurate'£»¡¡B¡¡for¡¡'length'£»¡¡C¡¡for¡¡'diagonal'¡£¡¡It¡¡is¡¡clear¡¡then¡¡that



this¡¡method¡¡of¡¡investigation¡¡is¡¡not¡¡suitable¡¡for¡¡every¡¡inquiry£»¡¡nor¡¡is



it¡¡useful¡¡in¡¡those¡¡cases¡¡in¡¡which¡¡it¡¡is¡¡thought¡¡to¡¡be¡¡most¡¡suitable¡£



¡¡¡¡From¡¡what¡¡has¡¡been¡¡said¡¡it¡¡is¡¡clear¡¡from¡¡what¡¡elements



demonstrations¡¡are¡¡formed¡¡and¡¡in¡¡what¡¡manner£»¡¡and¡¡to¡¡what¡¡points¡¡we



must¡¡look¡¡in¡¡each¡¡problem¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡32







¡¡¡¡Our¡¡next¡¡business¡¡is¡¡to¡¡state¡¡how¡¡we¡¡can¡¡reduce¡¡syllogisms¡¡to¡¡the



aforementioned¡¡figures£º¡¡for¡¡this¡¡part¡¡of¡¡the¡¡inquiry¡¡still¡¡remains¡£¡¡If



we¡¡should¡¡investigate¡¡the¡¡production¡¡of¡¡the¡¡syllogisms¡¡and¡¡had¡¡the



power¡¡of¡¡discovering¡¡them£»¡¡and¡¡further¡¡if¡¡we¡¡could¡¡resolve¡¡the



syllogisms¡¡produced¡¡into¡¡the¡¡aforementioned¡¡figures£»¡¡our¡¡original



problem¡¡would¡¡be¡¡brought¡¡to¡¡a¡¡conclusion¡£¡¡It¡¡will¡¡happen¡¡at¡¡the¡¡same



time¡¡that¡¡what¡¡has¡¡been¡¡already¡¡said¡¡will¡¡be¡¡confirmed¡¡and¡¡its¡¡truth



made¡¡clearer¡¡by¡¡what¡¡we¡¡are¡¡about¡¡to¡¡say¡£¡¡For¡¡everything¡¡that¡¡is



true¡¡must¡¡in¡¡every¡¡respect¡¡agree¡¡with¡¡itself¡¡First¡¡then¡¡we¡¡must



attempt¡¡to¡¡select¡¡the¡¡two¡¡premisses¡¡of¡¡the¡¡syllogism¡¡£¨for¡¡it¡¡is¡¡easier



to¡¡divide¡¡into¡¡large¡¡parts¡¡than¡¡into¡¡small£»¡¡and¡¡the¡¡composite¡¡parts



are¡¡larger¡¡than¡¡the¡¡elements¡¡out¡¡of¡¡which¡¡they¡¡are¡¡made£©£»¡¡next¡¡we¡¡must



inquire¡¡which¡¡are¡¡universal¡¡and¡¡which¡¡particular£»¡¡and¡¡if¡¡both



premisses¡¡have¡¡not¡¡been¡¡stated£»¡¡we¡¡must¡¡ourselves¡¡assume¡¡the¡¡one¡¡which



is¡¡missing¡£¡¡For¡¡sometimes¡¡men¡¡put¡¡forward¡¡the¡¡universal¡¡premiss£»¡¡but



do¡¡not¡¡posit¡¡the¡¡premiss¡¡which¡¡is¡¡contained¡¡in¡¡it£»¡¡either¡¡in¡¡writing



or¡¡in¡¡discussion£º¡¡or¡¡men¡¡put¡¡forward¡¡the¡¡premisses¡¡of¡¡the¡¡principal



syllogism£»¡¡but¡¡omit¡¡those¡¡through¡¡which¡¡they¡¡are¡¡inferred£»¡¡and



invite¡¡the¡¡concession¡¡of¡¡others¡¡to¡¡no¡¡purpose¡£¡¡We¡¡must¡¡inquire¡¡then



whether¡¡anything¡¡unnecessary¡¡has¡¡been¡¡assumed£»¡¡or¡¡anything¡¡necessary



has¡¡been¡¡omitted£»¡¡and¡¡we¡¡must¡¡posit¡¡the¡¡one¡¡and¡¡take¡¡away¡¡the¡¡other£»



until¡¡we¡¡have¡¡reached¡¡the¡¡two¡¡premisses£º¡¡for¡¡unless¡¡we¡¡have¡¡these£»



we¡¡cannot¡¡reduce¡¡arguments¡¡put¡¡forward¡¡in¡¡the¡¡way¡¡described¡£¡¡In¡¡some



arguments¡¡it¡¡is¡¡easy¡¡to¡¡see¡¡what¡¡is¡¡wanting£»¡¡but¡¡some¡¡escape¡¡us£»¡¡and



appear¡¡to¡¡be¡¡syllogisms£»¡¡because¡¡something¡¡necessary¡¡results¡¡from¡¡what



has¡¡been¡¡laid¡¡down£»¡¡e¡£g¡£¡¡if¡¡the¡¡assumptions¡¡were¡¡made¡¡that¡¡substance



is¡¡not¡¡annihilated¡¡by¡¡the¡¡annihilation¡¡of¡¡what¡¡is¡¡not¡¡substance£»¡¡and



that¡¡if¡¡the¡¡elements¡¡out¡¡of¡¡which¡¡a¡¡thing¡¡is¡¡made¡¡are¡¡annihilated£»



then¡¡that¡¡which¡¡is¡¡made¡¡out¡¡of¡¡them¡¡is¡¡destroyed£º¡¡these¡¡propositions



being¡¡laid¡¡down£»¡¡it¡¡is¡¡necessary¡¡that¡¡any¡¡part¡¡of¡¡substance¡¡is



substance£»¡¡this¡¡has¡¡not¡¡however¡¡been¡¡drawn¡¡by¡¡syllogism¡¡from¡¡the



propositions¡¡assumed£»¡¡but¡¡premisses¡¡are¡¡wanting¡£¡¡Again¡¡if¡¡it¡¡is



necessary¡¡that¡¡animal¡¡should¡¡exist£»¡¡if¡¡man¡¡does£»¡¡and¡¡that¡¡substance



should¡¡exist£»¡¡if¡¡animal¡¡does£»¡¡it¡¡is¡¡necessary¡¡that¡¡substance¡¡should



exist¡¡if¡¡man¡¡does£º¡¡but¡¡as¡¡yet¡¡the¡¡conclusion¡¡has¡¡not¡¡been¡¡drawn



syllogistically£º¡¡for¡¡the¡¡premisses¡¡are¡¡not¡¡in¡¡the¡¡shape¡¡we¡¡required¡£



We¡¡are¡¡deceived¡¡in¡¡such¡¡cases¡¡because¡¡something¡¡necessary¡¡results¡¡from



what¡¡is¡¡assumed£»¡¡since¡¡the¡¡syllogism¡¡also¡¡is¡¡necessary¡£¡¡But¡¡that¡¡which



is¡¡necessary¡¡is¡¡wider¡¡than¡¡the¡¡syllogism£º¡¡for¡¡every¡¡syllogism¡¡is



necessary£»¡¡but¡¡not¡¡everything¡¡which¡¡is¡¡necessary¡¡is¡¡a¡¡syllogism¡£



Consequently£»¡¡though¡¡something¡¡r

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨0£©

Äã¿ÉÄÜϲ»¶µÄ