°Ëϲµç×ÓÊé > ¾­¹ÜÆäËûµç×ÓÊé > prior analytics >

µÚ21²¿·Ö

prior analytics-µÚ21²¿·Ö

С˵£º prior analytics ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡





in¡¡negative¡£¡¡For¡¡it¡¡makes¡¡no¡¡difference¡¡to¡¡the¡¡setting¡¡out¡¡of¡¡the



terms£»¡¡whether¡¡one¡¡assumes¡¡that¡¡what¡¡belongs¡¡to¡¡none¡¡belongs¡¡to¡¡all¡¡or



that¡¡what¡¡belongs¡¡to¡¡some¡¡belongs¡¡to¡¡all¡£¡¡The¡¡same¡¡applies¡¡to¡¡negative



statements¡£



¡¡¡¡It¡¡is¡¡clear¡¡then¡¡that¡¡if¡¡the¡¡conclusion¡¡is¡¡false£»¡¡the¡¡premisses¡¡of



the¡¡argument¡¡must¡¡be¡¡false£»¡¡either¡¡all¡¡or¡¡some¡¡of¡¡them£»¡¡but¡¡when¡¡the



conclusion¡¡is¡¡true£»¡¡it¡¡is¡¡not¡¡necessary¡¡that¡¡the¡¡premisses¡¡should¡¡be



true£»¡¡either¡¡one¡¡or¡¡all£»¡¡yet¡¡it¡¡is¡¡possible£»¡¡though¡¡no¡¡part¡¡of¡¡the



syllogism¡¡is¡¡true£»¡¡that¡¡the¡¡conclusion¡¡may¡¡none¡¡the¡¡less¡¡be¡¡true£»



but¡¡it¡¡is¡¡not¡¡necessitated¡£¡¡The¡¡reason¡¡is¡¡that¡¡when¡¡two¡¡things¡¡are



so¡¡related¡¡to¡¡one¡¡another£»¡¡that¡¡if¡¡the¡¡one¡¡is£»¡¡the¡¡other¡¡necessarily



is£»¡¡then¡¡if¡¡the¡¡latter¡¡is¡¡not£»¡¡the¡¡former¡¡will¡¡not¡¡be¡¡either£»¡¡but¡¡if



the¡¡latter¡¡is£»¡¡it¡¡is¡¡not¡¡necessary¡¡that¡¡the¡¡former¡¡should¡¡be¡£¡¡But¡¡it



is¡¡impossible¡¡that¡¡the¡¡same¡¡thing¡¡should¡¡be¡¡necessitated¡¡by¡¡the



being¡¡and¡¡by¡¡the¡¡not¡­being¡¡of¡¡the¡¡same¡¡thing¡£¡¡I¡¡mean£»¡¡for¡¡example£»



that¡¡it¡¡is¡¡impossible¡¡that¡¡B¡¡should¡¡necessarily¡¡be¡¡great¡¡since¡¡A¡¡is



white¡¡and¡¡that¡¡B¡¡should¡¡necessarily¡¡be¡¡great¡¡since¡¡A¡¡is¡¡not¡¡white¡£¡¡For



whenever¡¡since¡¡this£»¡¡A£»¡¡is¡¡white¡¡it¡¡is¡¡necessary¡¡that¡¡that£»¡¡B£»



should¡¡be¡¡great£»¡¡and¡¡since¡¡B¡¡is¡¡great¡¡that¡¡C¡¡should¡¡not¡¡be¡¡white£»¡¡then



it¡¡is¡¡necessary¡¡if¡¡is¡¡white¡¡that¡¡C¡¡should¡¡not¡¡be¡¡white¡£¡¡And¡¡whenever



it¡¡is¡¡necessary£»¡¡since¡¡one¡¡of¡¡two¡¡things¡¡is£»¡¡that¡¡the¡¡other¡¡should¡¡be£»



it¡¡is¡¡necessary£»¡¡if¡¡the¡¡latter¡¡is¡¡not£»¡¡that¡¡the¡¡former¡¡£¨viz¡£¡¡A£©¡¡should



not¡¡be¡£¡¡If¡¡then¡¡B¡¡is¡¡not¡¡great¡¡A¡¡cannot¡¡be¡¡white¡£¡¡But¡¡if£»¡¡when¡¡A¡¡is



not¡¡white£»¡¡it¡¡is¡¡necessary¡¡that¡¡B¡¡should¡¡be¡¡great£»¡¡it¡¡necessarily



results¡¡that¡¡if¡¡B¡¡is¡¡not¡¡great£»¡¡B¡¡itself¡¡is¡¡great¡£¡¡£¨But¡¡this¡¡is



impossible¡££©¡¡For¡¡if¡¡B¡¡is¡¡not¡¡great£»¡¡A¡¡will¡¡necessarily¡¡not¡¡be¡¡white¡£



If¡¡then¡¡when¡¡this¡¡is¡¡not¡¡white¡¡B¡¡must¡¡be¡¡great£»¡¡it¡¡results¡¡that¡¡if¡¡B



is¡¡not¡¡great£»¡¡it¡¡is¡¡great£»¡¡just¡¡as¡¡if¡¡it¡¡were¡¡proved¡¡through¡¡three



terms¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡5







¡¡¡¡Circular¡¡and¡¡reciprocal¡¡proof¡¡means¡¡proof¡¡by¡¡means¡¡of¡¡the



conclusion£»¡¡i¡£e¡£¡¡by¡¡converting¡¡one¡¡of¡¡the¡¡premisses¡¡simply¡¡and



inferring¡¡the¡¡premiss¡¡which¡¡was¡¡assumed¡¡in¡¡the¡¡original¡¡syllogism£º



e¡£g¡£¡¡suppose¡¡it¡¡has¡¡been¡¡necessary¡¡to¡¡prove¡¡that¡¡A¡¡belongs¡¡to¡¡all¡¡C£»



and¡¡it¡¡has¡¡been¡¡proved¡¡through¡¡B£»¡¡suppose¡¡that¡¡A¡¡should¡¡now¡¡be



proved¡¡to¡¡belong¡¡to¡¡B¡¡by¡¡assuming¡¡that¡¡A¡¡belongs¡¡to¡¡C£»¡¡and¡¡C¡¡to¡¡B¡­so¡¡A



belongs¡¡to¡¡B£º¡¡but¡¡in¡¡the¡¡first¡¡syllogism¡¡the¡¡converse¡¡was¡¡assumed£»



viz¡£¡¡that¡¡B¡¡belongs¡¡to¡¡C¡£¡¡Or¡¡suppose¡¡it¡¡is¡¡necessary¡¡to¡¡prove¡¡that¡¡B



belongs¡¡to¡¡C£»¡¡and¡¡A¡¡is¡¡assumed¡¡to¡¡belong¡¡to¡¡C£»¡¡which¡¡was¡¡the



conclusion¡¡of¡¡the¡¡first¡¡syllogism£»¡¡and¡¡B¡¡to¡¡belong¡¡to¡¡A¡¡but¡¡the



converse¡¡was¡¡assumed¡¡in¡¡the¡¡earlier¡¡syllogism£»¡¡viz¡£¡¡that¡¡A¡¡belongs



to¡¡B¡£¡¡In¡¡no¡¡other¡¡way¡¡is¡¡reciprocal¡¡proof¡¡possible¡£¡¡If¡¡another¡¡term¡¡is



taken¡¡as¡¡middle£»¡¡the¡¡proof¡¡is¡¡not¡¡circular£º¡¡for¡¡neither¡¡of¡¡the



propositions¡¡assumed¡¡is¡¡the¡¡same¡¡as¡¡before£º¡¡if¡¡one¡¡of¡¡the¡¡accepted



terms¡¡is¡¡taken¡¡as¡¡middle£»¡¡only¡¡one¡¡of¡¡the¡¡premisses¡¡of¡¡the¡¡first



syllogism¡¡can¡¡be¡¡assumed¡¡in¡¡the¡¡second£º¡¡for¡¡if¡¡both¡¡of¡¡them¡¡are



taken¡¡the¡¡same¡¡conclusion¡¡as¡¡before¡¡will¡¡result£º¡¡but¡¡it¡¡must¡¡be



different¡£¡¡If¡¡the¡¡terms¡¡are¡¡not¡¡convertible£»¡¡one¡¡of¡¡the¡¡premisses¡¡from



which¡¡the¡¡syllogism¡¡results¡¡must¡¡be¡¡undemonstrated£º¡¡for¡¡it¡¡is¡¡not



possible¡¡to¡¡demonstrate¡¡through¡¡these¡¡terms¡¡that¡¡the¡¡third¡¡belongs



to¡¡the¡¡middle¡¡or¡¡the¡¡middle¡¡to¡¡the¡¡first¡£¡¡If¡¡the¡¡terms¡¡are



convertible£»¡¡it¡¡is¡¡possible¡¡to¡¡demonstrate¡¡everything¡¡reciprocally£»



e¡£g¡£¡¡if¡¡A¡¡and¡¡B¡¡and¡¡C¡¡are¡¡convertible¡¡with¡¡one¡¡another¡£¡¡Suppose¡¡the





proposition¡¡AC¡¡has¡¡been¡¡demonstrated¡¡through¡¡B¡¡as¡¡middle¡¡term£»¡¡and



again¡¡the¡¡proposition¡¡AB¡¡through¡¡the¡¡conclusion¡¡and¡¡the¡¡premiss¡¡BC



converted£»¡¡and¡¡similarly¡¡the¡¡proposition¡¡BC¡¡through¡¡the¡¡conclusion¡¡and



the¡¡premiss¡¡AB¡¡converted¡£¡¡But¡¡it¡¡is¡¡necessary¡¡to¡¡prove¡¡both¡¡the



premiss¡¡CB£»¡¡and¡¡the¡¡premiss¡¡BA£º¡¡for¡¡we¡¡have¡¡used¡¡these¡¡alone¡¡without



demonstrating¡¡them¡£¡¡If¡¡then¡¡it¡¡is¡¡assumed¡¡that¡¡B¡¡belongs¡¡to¡¡all¡¡C£»¡¡and



C¡¡to¡¡all¡¡A£»¡¡we¡¡shall¡¡have¡¡a¡¡syllogism¡¡relating¡¡B¡¡to¡¡A¡£¡¡Again¡¡if¡¡it



is¡¡assumed¡¡that¡¡C¡¡belongs¡¡to¡¡all¡¡A£»¡¡and¡¡A¡¡to¡¡all¡¡B£»¡¡C¡¡must¡¡belong¡¡to



all¡¡B¡£¡¡In¡¡both¡¡these¡¡syllogisms¡¡the¡¡premiss¡¡CA¡¡has¡¡been¡¡assumed



without¡¡being¡¡demonstrated£º¡¡the¡¡other¡¡premisses¡¡had¡¡ex¡¡hypothesi



been¡¡proved¡£¡¡Consequently¡¡if¡¡we¡¡succeed¡¡in¡¡demonstrating¡¡this¡¡premiss£»



all¡¡the¡¡premisses¡¡will¡¡have¡¡been¡¡proved¡¡reciprocally¡£¡¡If¡¡then¡¡it¡¡is



assumed¡¡that¡¡C¡¡belongs¡¡to¡¡all¡¡B£»¡¡and¡¡B¡¡to¡¡all¡¡A£»¡¡both¡¡the¡¡premisses



assumed¡¡have¡¡been¡¡proved£»¡¡and¡¡C¡¡must¡¡belong¡¡to¡¡A¡£¡¡It¡¡is¡¡clear¡¡then



that¡¡only¡¡if¡¡the¡¡terms¡¡are¡¡convertible¡¡is¡¡circular¡¡and¡¡reciprocal



demonstration¡¡possible¡¡£¨if¡¡the¡¡terms¡¡are¡¡not¡¡convertible£»¡¡the¡¡matter



stands¡¡as¡¡we¡¡said¡¡above£©¡£¡¡But¡¡it¡¡turns¡¡out¡¡in¡¡these¡¡also¡¡that¡¡we¡¡use



for¡¡the¡¡demonstration¡¡the¡¡very¡¡thing¡¡that¡¡is¡¡being¡¡proved£º¡¡for¡¡C¡¡is



proved¡¡of¡¡B£»¡¡and¡¡B¡¡of¡¡by¡¡assuming¡¡that¡¡C¡¡is¡¡said¡¡of¡¡and¡¡C¡¡is¡¡proved¡¡of



A¡¡through¡¡these¡¡premisses£»¡¡so¡¡that¡¡we¡¡use¡¡the¡¡conclusion¡¡for¡¡the



demonstration¡£



¡¡¡¡In¡¡negative¡¡syllogisms¡¡reciprocal¡¡proof¡¡is¡¡as¡¡follows¡£¡¡Let¡¡B



belong¡¡to¡¡all¡¡C£»¡¡and¡¡A¡¡to¡¡none¡¡of¡¡the¡¡Bs£º¡¡we¡¡conclude¡¡that¡¡A¡¡belongs



to¡¡none¡¡of¡¡the¡¡Cs¡£¡¡If¡¡again¡¡it¡¡is¡¡necessary¡¡to¡¡prove¡¡that¡¡A¡¡belongs¡¡to



none¡¡of¡¡the¡¡Bs¡¡£¨which¡¡was¡¡previously¡¡assumed£©¡¡A¡¡must¡¡belong¡¡to¡¡no¡¡C£»



and¡¡C¡¡to¡¡all¡¡B£º¡¡thus¡¡the¡¡previous¡¡premiss¡¡is¡¡reversed¡£¡¡If¡¡it¡¡is



necessary¡¡to¡¡prove¡¡that¡¡B¡¡belongs¡¡to¡¡C£»¡¡the¡¡proposition¡¡AB¡¡must¡¡no



longer¡¡be¡¡converted¡¡as¡¡before£º¡¡for¡¡the¡¡premiss¡¡'B¡¡belongs¡¡to¡¡no¡¡A'



is¡¡identical¡¡with¡¡the¡¡premiss¡¡'A¡¡belongs¡¡to¡¡no¡¡B'¡£¡¡But¡¡we¡¡must



assume¡¡that¡¡B¡¡belongs¡¡to¡¡all¡¡of¡¡that¡¡to¡¡none¡¡of¡¡which¡¡longs¡£¡¡Let¡¡A



belong¡¡to¡¡none¡¡of¡¡the¡¡Cs¡¡£¨which¡¡was¡¡the¡¡previous¡¡conclusion£©¡¡and



assume¡¡that¡¡B¡¡belongs¡¡to¡¡all¡¡of¡¡that¡¡to¡¡none¡¡of¡¡which¡¡A¡¡belongs¡£¡¡It¡¡is



necessary¡¡then¡¡that¡¡B¡¡should¡¡belong¡¡to¡¡all¡¡C¡£¡¡Consequently¡¡each¡¡of¡¡the



three¡¡propositions¡¡has¡¡been¡¡made¡¡a¡¡conclusion£»¡¡and¡¡this¡¡is¡¡circular



demonstration£»¡¡to¡¡assume¡¡the¡¡conclusion¡¡and¡¡the¡¡converse¡¡of¡¡one¡¡of¡¡the



premisses£»¡¡and¡¡deduce¡¡the¡¡remaining¡¡premiss¡£



¡¡¡¡In¡¡particular¡¡syllogisms¡¡it¡¡is¡¡not¡¡possible¡¡to¡¡demonstrate¡¡the



universal¡¡premiss¡¡through¡¡the¡¡other¡¡propositions£»¡¡but¡¡the¡¡particular



premiss¡¡can¡¡be¡¡demonstrated¡£¡¡Clearly¡¡it¡¡is¡¡impossible¡¡to¡¡demonstrate



the¡¡universal¡¡premiss£º¡¡for¡¡what¡¡is¡¡universal¡¡is¡¡proved¡¡through



propositions¡¡which¡¡are¡¡universal£»¡¡but¡¡the¡¡conclusion¡¡is¡¡not¡¡universal£»



and¡¡the¡¡proof¡¡must¡¡start¡¡from¡¡the¡¡conclusion¡¡and¡¡the¡¡other¡¡premiss¡£



Further¡¡a¡¡syllogism¡¡cannot¡¡be¡¡made¡¡at¡¡all¡¡if¡¡the¡¡other¡¡premiss¡¡is



converted£º¡¡for¡¡the¡¡result¡¡is¡¡that¡¡both¡¡premisses¡¡are¡¡particular¡£¡¡But



the¡¡particular¡¡premiss¡¡may¡¡be¡¡proved¡£¡¡Suppose¡¡that¡¡A¡¡has¡¡been¡¡proved



of¡¡some¡¡C¡¡through¡¡B¡£¡¡If¡¡then¡¡it¡¡is¡¡assumed¡¡that¡¡B¡¡belongs¡¡to¡¡all¡¡A¡¡and



the¡¡conclusion¡¡is¡¡retained£»¡¡B¡¡will¡¡belong¡¡to¡¡some¡¡C£º¡¡for¡¡we¡¡obtain¡¡the



first¡¡figure¡¡and¡¡A¡¡is¡¡middle¡£¡¡But¡¡if¡¡the¡¡syllogism¡¡is¡¡negative£»¡¡it



is¡¡not¡¡possible¡¡to¡¡prove¡¡the¡¡universal¡¡premiss£»¡¡for¡¡the¡¡reason¡¡given



above¡£¡¡But¡¡it¡¡is¡¡possible¡¡to¡¡prove¡¡the¡¡particular¡¡premiss£»¡¡if¡¡the



proposition¡¡AB¡¡is¡¡converted¡¡as¡¡in¡¡the¡¡universal¡¡syllogism£»¡¡i¡£e¡¡'B



belongs¡¡to¡¡some¡¡of¡¡that¡¡to¡¡some¡¡of¡¡which¡¡A¡¡does¡¡not¡¡belong'£º¡¡otherwise



no¡¡syllogism¡¡results¡¡because¡¡the¡¡particular¡¡premiss¡¡is¡¡negative¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡6







¡¡¡¡In¡¡the¡¡second¡¡figure¡¡it¡¡is¡¡not¡¡possible¡¡to¡¡prove¡¡an¡¡affirmative



proposition¡¡in¡¡this¡¡way£»¡¡but¡¡a¡¡negative¡¡proposition¡¡may¡¡be¡¡proved¡£



An¡¡affirmative¡¡proposition¡¡is¡¡not¡¡proved¡¡because¡¡both¡¡premisses¡¡of¡¡the



new¡¡syllogism¡¡are¡¡not¡¡affirmative¡¡£¨for¡¡the¡¡conclusion¡¡is¡¡negative£©¡¡but



an¡¡affirmative¡¡proposition¡¡is¡¡£¨as¡¡we¡¡saw£©¡¡proved¡¡from¡¡premisses



which¡¡are¡¡both¡¡affirmative¡£¡¡The¡¡negative¡¡is¡¡proved¡¡as¡¡follows¡£¡¡Let¡¡A



belong¡¡to¡¡all¡¡B£»¡¡and¡¡to¡¡no¡¡C£º¡¡we¡¡conclude¡¡that¡¡B¡¡belongs¡¡to¡¡no¡¡C¡£¡¡If



then¡¡it¡¡is¡¡assumed¡¡that¡¡B¡¡belongs¡¡to¡¡all¡¡A£»¡¡it¡¡is¡¡necessary¡¡that¡¡A



should¡¡belong¡¡to¡¡no¡¡C£º¡¡for¡¡we¡¡get¡¡the¡¡second¡¡figure£»¡¡with¡¡B¡¡as¡¡middle¡£



But¡¡if¡¡the¡¡premiss¡¡AB¡¡was¡¡negative£»¡¡and¡¡the¡¡other¡¡affirmative£»¡¡we



shall¡¡have¡¡the¡¡first¡¡figure¡£¡¡For¡¡C¡¡belongs¡¡to¡¡all¡¡A¡¡and¡¡B¡¡to¡¡no¡¡C£»



consequently¡¡B¡¡belongs¡¡to¡¡no¡¡A£º¡¡neither¡¡then¡¡does¡¡A¡¡belong¡¡to¡¡B¡£



Through¡¡the¡¡conclusion£»¡¡therefore£»¡¡and¡¡one¡¡premiss£»¡¡we¡¡get¡¡no



syllogism£»¡¡but¡¡if¡¡another¡¡premiss¡¡is¡¡assumed¡¡in¡¡addition£»¡¡a



syllogism¡¡will¡¡be¡¡possible¡£¡¡But¡¡if¡¡the¡¡syllogism¡¡not¡¡universal£»¡¡the



universal¡¡premiss¡¡cannot¡¡be¡¡proved£»¡¡for¡¡the¡¡same¡¡reason¡¡as¡¡we¡¡gave



above£»¡¡but¡¡the¡¡particular¡¡premiss¡¡can¡¡be¡¡proved¡¡whenever¡¡the¡¡universal



statement¡¡is¡¡affirmative¡£¡¡Let¡¡A¡¡belong¡¡to¡¡all¡¡B£»¡¡and¡¡not¡¡to¡¡all¡¡C£º¡¡the



conclusion¡¡is¡¡BC¡£¡¡If¡¡then¡¡it¡¡is¡¡assumed¡¡that¡¡B¡¡belongs¡¡to¡¡all¡¡A£»¡¡but



not¡¡to¡¡all¡¡C£»¡¡A¡¡will¡¡not¡¡belong¡¡to¡¡some¡¡C£»¡¡B¡¡being¡¡middle¡£¡¡But¡¡if



the¡¡universal¡¡premiss¡¡is¡¡negative£»¡¡the¡¡premiss¡¡AC¡¡will¡¡not¡¡be



demonstrated¡¡by¡¡the¡¡conversion¡¡of¡¡AB£º¡¡for¡¡it¡¡turns¡¡out¡¡that¡¡either



both¡¡or¡¡one¡¡of¡¡the¡¡premisses¡¡is¡¡negative£»¡¡consequently¡¡a¡¡syllogism



will¡¡not¡¡be¡¡possible¡£¡¡But¡¡the¡¡proof¡¡will¡¡proceed¡¡as¡¡in¡¡the¡¡universal



syllogisms£»¡¡if¡¡it¡¡is¡¡assumed¡¡that¡¡A¡¡belongs¡¡to¡¡some¡¡of¡¡that¡¡to¡¡some¡¡of



which¡¡B¡¡does¡¡not¡¡belong¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡7







¡¡¡¡In¡¡the¡¡third¡¡figure£»¡¡when¡¡both¡¡premisses¡¡are¡¡taken¡¡universally£»¡¡it



is¡¡not¡¡possible¡¡to¡¡prove¡¡them¡¡reciprocally£º¡¡for¡¡that¡¡which¡¡is



universal¡¡is¡¡proved¡¡through¡¡statements¡¡which¡¡are¡¡universal£»¡¡but¡¡the



conclusion¡¡in¡¡this¡¡figure¡¡is¡¡always¡¡particular£»¡¡so¡¡that¡¡it¡¡is¡¡clear



that¡¡it¡¡is¡¡not¡¡possible¡¡at¡¡all¡¡to¡¡prove¡¡through¡¡this¡¡figure¡¡the



universal¡¡premiss¡£¡¡But¡¡if¡¡one¡¡premiss¡¡is¡¡universal£»¡¡the¡¡other



particular£»¡¡proof¡¡of¡¡the¡¡latter¡¡will¡¡sometimes¡¡be¡¡possible£»



sometimes¡¡not¡£¡¡When¡¡both¡¡the¡¡premisses¡¡assumed¡¡are¡¡affirmative£»¡¡and



the¡¡universal¡¡concerns¡¡the¡¡minor¡¡extreme£»¡¡proof¡¡will¡¡be¡¡possible£»

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨0£©

Äã¿ÉÄÜϲ»¶µÄ