prior analytics-µÚ21²¿·Ö
°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·ҳ£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡
in¡¡negative¡£¡¡For¡¡it¡¡makes¡¡no¡¡difference¡¡to¡¡the¡¡setting¡¡out¡¡of¡¡the
terms£»¡¡whether¡¡one¡¡assumes¡¡that¡¡what¡¡belongs¡¡to¡¡none¡¡belongs¡¡to¡¡all¡¡or
that¡¡what¡¡belongs¡¡to¡¡some¡¡belongs¡¡to¡¡all¡£¡¡The¡¡same¡¡applies¡¡to¡¡negative
statements¡£
¡¡¡¡It¡¡is¡¡clear¡¡then¡¡that¡¡if¡¡the¡¡conclusion¡¡is¡¡false£»¡¡the¡¡premisses¡¡of
the¡¡argument¡¡must¡¡be¡¡false£»¡¡either¡¡all¡¡or¡¡some¡¡of¡¡them£»¡¡but¡¡when¡¡the
conclusion¡¡is¡¡true£»¡¡it¡¡is¡¡not¡¡necessary¡¡that¡¡the¡¡premisses¡¡should¡¡be
true£»¡¡either¡¡one¡¡or¡¡all£»¡¡yet¡¡it¡¡is¡¡possible£»¡¡though¡¡no¡¡part¡¡of¡¡the
syllogism¡¡is¡¡true£»¡¡that¡¡the¡¡conclusion¡¡may¡¡none¡¡the¡¡less¡¡be¡¡true£»
but¡¡it¡¡is¡¡not¡¡necessitated¡£¡¡The¡¡reason¡¡is¡¡that¡¡when¡¡two¡¡things¡¡are
so¡¡related¡¡to¡¡one¡¡another£»¡¡that¡¡if¡¡the¡¡one¡¡is£»¡¡the¡¡other¡¡necessarily
is£»¡¡then¡¡if¡¡the¡¡latter¡¡is¡¡not£»¡¡the¡¡former¡¡will¡¡not¡¡be¡¡either£»¡¡but¡¡if
the¡¡latter¡¡is£»¡¡it¡¡is¡¡not¡¡necessary¡¡that¡¡the¡¡former¡¡should¡¡be¡£¡¡But¡¡it
is¡¡impossible¡¡that¡¡the¡¡same¡¡thing¡¡should¡¡be¡¡necessitated¡¡by¡¡the
being¡¡and¡¡by¡¡the¡¡not¡being¡¡of¡¡the¡¡same¡¡thing¡£¡¡I¡¡mean£»¡¡for¡¡example£»
that¡¡it¡¡is¡¡impossible¡¡that¡¡B¡¡should¡¡necessarily¡¡be¡¡great¡¡since¡¡A¡¡is
white¡¡and¡¡that¡¡B¡¡should¡¡necessarily¡¡be¡¡great¡¡since¡¡A¡¡is¡¡not¡¡white¡£¡¡For
whenever¡¡since¡¡this£»¡¡A£»¡¡is¡¡white¡¡it¡¡is¡¡necessary¡¡that¡¡that£»¡¡B£»
should¡¡be¡¡great£»¡¡and¡¡since¡¡B¡¡is¡¡great¡¡that¡¡C¡¡should¡¡not¡¡be¡¡white£»¡¡then
it¡¡is¡¡necessary¡¡if¡¡is¡¡white¡¡that¡¡C¡¡should¡¡not¡¡be¡¡white¡£¡¡And¡¡whenever
it¡¡is¡¡necessary£»¡¡since¡¡one¡¡of¡¡two¡¡things¡¡is£»¡¡that¡¡the¡¡other¡¡should¡¡be£»
it¡¡is¡¡necessary£»¡¡if¡¡the¡¡latter¡¡is¡¡not£»¡¡that¡¡the¡¡former¡¡£¨viz¡£¡¡A£©¡¡should
not¡¡be¡£¡¡If¡¡then¡¡B¡¡is¡¡not¡¡great¡¡A¡¡cannot¡¡be¡¡white¡£¡¡But¡¡if£»¡¡when¡¡A¡¡is
not¡¡white£»¡¡it¡¡is¡¡necessary¡¡that¡¡B¡¡should¡¡be¡¡great£»¡¡it¡¡necessarily
results¡¡that¡¡if¡¡B¡¡is¡¡not¡¡great£»¡¡B¡¡itself¡¡is¡¡great¡£¡¡£¨But¡¡this¡¡is
impossible¡££©¡¡For¡¡if¡¡B¡¡is¡¡not¡¡great£»¡¡A¡¡will¡¡necessarily¡¡not¡¡be¡¡white¡£
If¡¡then¡¡when¡¡this¡¡is¡¡not¡¡white¡¡B¡¡must¡¡be¡¡great£»¡¡it¡¡results¡¡that¡¡if¡¡B
is¡¡not¡¡great£»¡¡it¡¡is¡¡great£»¡¡just¡¡as¡¡if¡¡it¡¡were¡¡proved¡¡through¡¡three
terms¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡5
¡¡¡¡Circular¡¡and¡¡reciprocal¡¡proof¡¡means¡¡proof¡¡by¡¡means¡¡of¡¡the
conclusion£»¡¡i¡£e¡£¡¡by¡¡converting¡¡one¡¡of¡¡the¡¡premisses¡¡simply¡¡and
inferring¡¡the¡¡premiss¡¡which¡¡was¡¡assumed¡¡in¡¡the¡¡original¡¡syllogism£º
e¡£g¡£¡¡suppose¡¡it¡¡has¡¡been¡¡necessary¡¡to¡¡prove¡¡that¡¡A¡¡belongs¡¡to¡¡all¡¡C£»
and¡¡it¡¡has¡¡been¡¡proved¡¡through¡¡B£»¡¡suppose¡¡that¡¡A¡¡should¡¡now¡¡be
proved¡¡to¡¡belong¡¡to¡¡B¡¡by¡¡assuming¡¡that¡¡A¡¡belongs¡¡to¡¡C£»¡¡and¡¡C¡¡to¡¡B¡so¡¡A
belongs¡¡to¡¡B£º¡¡but¡¡in¡¡the¡¡first¡¡syllogism¡¡the¡¡converse¡¡was¡¡assumed£»
viz¡£¡¡that¡¡B¡¡belongs¡¡to¡¡C¡£¡¡Or¡¡suppose¡¡it¡¡is¡¡necessary¡¡to¡¡prove¡¡that¡¡B
belongs¡¡to¡¡C£»¡¡and¡¡A¡¡is¡¡assumed¡¡to¡¡belong¡¡to¡¡C£»¡¡which¡¡was¡¡the
conclusion¡¡of¡¡the¡¡first¡¡syllogism£»¡¡and¡¡B¡¡to¡¡belong¡¡to¡¡A¡¡but¡¡the
converse¡¡was¡¡assumed¡¡in¡¡the¡¡earlier¡¡syllogism£»¡¡viz¡£¡¡that¡¡A¡¡belongs
to¡¡B¡£¡¡In¡¡no¡¡other¡¡way¡¡is¡¡reciprocal¡¡proof¡¡possible¡£¡¡If¡¡another¡¡term¡¡is
taken¡¡as¡¡middle£»¡¡the¡¡proof¡¡is¡¡not¡¡circular£º¡¡for¡¡neither¡¡of¡¡the
propositions¡¡assumed¡¡is¡¡the¡¡same¡¡as¡¡before£º¡¡if¡¡one¡¡of¡¡the¡¡accepted
terms¡¡is¡¡taken¡¡as¡¡middle£»¡¡only¡¡one¡¡of¡¡the¡¡premisses¡¡of¡¡the¡¡first
syllogism¡¡can¡¡be¡¡assumed¡¡in¡¡the¡¡second£º¡¡for¡¡if¡¡both¡¡of¡¡them¡¡are
taken¡¡the¡¡same¡¡conclusion¡¡as¡¡before¡¡will¡¡result£º¡¡but¡¡it¡¡must¡¡be
different¡£¡¡If¡¡the¡¡terms¡¡are¡¡not¡¡convertible£»¡¡one¡¡of¡¡the¡¡premisses¡¡from
which¡¡the¡¡syllogism¡¡results¡¡must¡¡be¡¡undemonstrated£º¡¡for¡¡it¡¡is¡¡not
possible¡¡to¡¡demonstrate¡¡through¡¡these¡¡terms¡¡that¡¡the¡¡third¡¡belongs
to¡¡the¡¡middle¡¡or¡¡the¡¡middle¡¡to¡¡the¡¡first¡£¡¡If¡¡the¡¡terms¡¡are
convertible£»¡¡it¡¡is¡¡possible¡¡to¡¡demonstrate¡¡everything¡¡reciprocally£»
e¡£g¡£¡¡if¡¡A¡¡and¡¡B¡¡and¡¡C¡¡are¡¡convertible¡¡with¡¡one¡¡another¡£¡¡Suppose¡¡the
proposition¡¡AC¡¡has¡¡been¡¡demonstrated¡¡through¡¡B¡¡as¡¡middle¡¡term£»¡¡and
again¡¡the¡¡proposition¡¡AB¡¡through¡¡the¡¡conclusion¡¡and¡¡the¡¡premiss¡¡BC
converted£»¡¡and¡¡similarly¡¡the¡¡proposition¡¡BC¡¡through¡¡the¡¡conclusion¡¡and
the¡¡premiss¡¡AB¡¡converted¡£¡¡But¡¡it¡¡is¡¡necessary¡¡to¡¡prove¡¡both¡¡the
premiss¡¡CB£»¡¡and¡¡the¡¡premiss¡¡BA£º¡¡for¡¡we¡¡have¡¡used¡¡these¡¡alone¡¡without
demonstrating¡¡them¡£¡¡If¡¡then¡¡it¡¡is¡¡assumed¡¡that¡¡B¡¡belongs¡¡to¡¡all¡¡C£»¡¡and
C¡¡to¡¡all¡¡A£»¡¡we¡¡shall¡¡have¡¡a¡¡syllogism¡¡relating¡¡B¡¡to¡¡A¡£¡¡Again¡¡if¡¡it
is¡¡assumed¡¡that¡¡C¡¡belongs¡¡to¡¡all¡¡A£»¡¡and¡¡A¡¡to¡¡all¡¡B£»¡¡C¡¡must¡¡belong¡¡to
all¡¡B¡£¡¡In¡¡both¡¡these¡¡syllogisms¡¡the¡¡premiss¡¡CA¡¡has¡¡been¡¡assumed
without¡¡being¡¡demonstrated£º¡¡the¡¡other¡¡premisses¡¡had¡¡ex¡¡hypothesi
been¡¡proved¡£¡¡Consequently¡¡if¡¡we¡¡succeed¡¡in¡¡demonstrating¡¡this¡¡premiss£»
all¡¡the¡¡premisses¡¡will¡¡have¡¡been¡¡proved¡¡reciprocally¡£¡¡If¡¡then¡¡it¡¡is
assumed¡¡that¡¡C¡¡belongs¡¡to¡¡all¡¡B£»¡¡and¡¡B¡¡to¡¡all¡¡A£»¡¡both¡¡the¡¡premisses
assumed¡¡have¡¡been¡¡proved£»¡¡and¡¡C¡¡must¡¡belong¡¡to¡¡A¡£¡¡It¡¡is¡¡clear¡¡then
that¡¡only¡¡if¡¡the¡¡terms¡¡are¡¡convertible¡¡is¡¡circular¡¡and¡¡reciprocal
demonstration¡¡possible¡¡£¨if¡¡the¡¡terms¡¡are¡¡not¡¡convertible£»¡¡the¡¡matter
stands¡¡as¡¡we¡¡said¡¡above£©¡£¡¡But¡¡it¡¡turns¡¡out¡¡in¡¡these¡¡also¡¡that¡¡we¡¡use
for¡¡the¡¡demonstration¡¡the¡¡very¡¡thing¡¡that¡¡is¡¡being¡¡proved£º¡¡for¡¡C¡¡is
proved¡¡of¡¡B£»¡¡and¡¡B¡¡of¡¡by¡¡assuming¡¡that¡¡C¡¡is¡¡said¡¡of¡¡and¡¡C¡¡is¡¡proved¡¡of
A¡¡through¡¡these¡¡premisses£»¡¡so¡¡that¡¡we¡¡use¡¡the¡¡conclusion¡¡for¡¡the
demonstration¡£
¡¡¡¡In¡¡negative¡¡syllogisms¡¡reciprocal¡¡proof¡¡is¡¡as¡¡follows¡£¡¡Let¡¡B
belong¡¡to¡¡all¡¡C£»¡¡and¡¡A¡¡to¡¡none¡¡of¡¡the¡¡Bs£º¡¡we¡¡conclude¡¡that¡¡A¡¡belongs
to¡¡none¡¡of¡¡the¡¡Cs¡£¡¡If¡¡again¡¡it¡¡is¡¡necessary¡¡to¡¡prove¡¡that¡¡A¡¡belongs¡¡to
none¡¡of¡¡the¡¡Bs¡¡£¨which¡¡was¡¡previously¡¡assumed£©¡¡A¡¡must¡¡belong¡¡to¡¡no¡¡C£»
and¡¡C¡¡to¡¡all¡¡B£º¡¡thus¡¡the¡¡previous¡¡premiss¡¡is¡¡reversed¡£¡¡If¡¡it¡¡is
necessary¡¡to¡¡prove¡¡that¡¡B¡¡belongs¡¡to¡¡C£»¡¡the¡¡proposition¡¡AB¡¡must¡¡no
longer¡¡be¡¡converted¡¡as¡¡before£º¡¡for¡¡the¡¡premiss¡¡'B¡¡belongs¡¡to¡¡no¡¡A'
is¡¡identical¡¡with¡¡the¡¡premiss¡¡'A¡¡belongs¡¡to¡¡no¡¡B'¡£¡¡But¡¡we¡¡must
assume¡¡that¡¡B¡¡belongs¡¡to¡¡all¡¡of¡¡that¡¡to¡¡none¡¡of¡¡which¡¡longs¡£¡¡Let¡¡A
belong¡¡to¡¡none¡¡of¡¡the¡¡Cs¡¡£¨which¡¡was¡¡the¡¡previous¡¡conclusion£©¡¡and
assume¡¡that¡¡B¡¡belongs¡¡to¡¡all¡¡of¡¡that¡¡to¡¡none¡¡of¡¡which¡¡A¡¡belongs¡£¡¡It¡¡is
necessary¡¡then¡¡that¡¡B¡¡should¡¡belong¡¡to¡¡all¡¡C¡£¡¡Consequently¡¡each¡¡of¡¡the
three¡¡propositions¡¡has¡¡been¡¡made¡¡a¡¡conclusion£»¡¡and¡¡this¡¡is¡¡circular
demonstration£»¡¡to¡¡assume¡¡the¡¡conclusion¡¡and¡¡the¡¡converse¡¡of¡¡one¡¡of¡¡the
premisses£»¡¡and¡¡deduce¡¡the¡¡remaining¡¡premiss¡£
¡¡¡¡In¡¡particular¡¡syllogisms¡¡it¡¡is¡¡not¡¡possible¡¡to¡¡demonstrate¡¡the
universal¡¡premiss¡¡through¡¡the¡¡other¡¡propositions£»¡¡but¡¡the¡¡particular
premiss¡¡can¡¡be¡¡demonstrated¡£¡¡Clearly¡¡it¡¡is¡¡impossible¡¡to¡¡demonstrate
the¡¡universal¡¡premiss£º¡¡for¡¡what¡¡is¡¡universal¡¡is¡¡proved¡¡through
propositions¡¡which¡¡are¡¡universal£»¡¡but¡¡the¡¡conclusion¡¡is¡¡not¡¡universal£»
and¡¡the¡¡proof¡¡must¡¡start¡¡from¡¡the¡¡conclusion¡¡and¡¡the¡¡other¡¡premiss¡£
Further¡¡a¡¡syllogism¡¡cannot¡¡be¡¡made¡¡at¡¡all¡¡if¡¡the¡¡other¡¡premiss¡¡is
converted£º¡¡for¡¡the¡¡result¡¡is¡¡that¡¡both¡¡premisses¡¡are¡¡particular¡£¡¡But
the¡¡particular¡¡premiss¡¡may¡¡be¡¡proved¡£¡¡Suppose¡¡that¡¡A¡¡has¡¡been¡¡proved
of¡¡some¡¡C¡¡through¡¡B¡£¡¡If¡¡then¡¡it¡¡is¡¡assumed¡¡that¡¡B¡¡belongs¡¡to¡¡all¡¡A¡¡and
the¡¡conclusion¡¡is¡¡retained£»¡¡B¡¡will¡¡belong¡¡to¡¡some¡¡C£º¡¡for¡¡we¡¡obtain¡¡the
first¡¡figure¡¡and¡¡A¡¡is¡¡middle¡£¡¡But¡¡if¡¡the¡¡syllogism¡¡is¡¡negative£»¡¡it
is¡¡not¡¡possible¡¡to¡¡prove¡¡the¡¡universal¡¡premiss£»¡¡for¡¡the¡¡reason¡¡given
above¡£¡¡But¡¡it¡¡is¡¡possible¡¡to¡¡prove¡¡the¡¡particular¡¡premiss£»¡¡if¡¡the
proposition¡¡AB¡¡is¡¡converted¡¡as¡¡in¡¡the¡¡universal¡¡syllogism£»¡¡i¡£e¡¡'B
belongs¡¡to¡¡some¡¡of¡¡that¡¡to¡¡some¡¡of¡¡which¡¡A¡¡does¡¡not¡¡belong'£º¡¡otherwise
no¡¡syllogism¡¡results¡¡because¡¡the¡¡particular¡¡premiss¡¡is¡¡negative¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡6
¡¡¡¡In¡¡the¡¡second¡¡figure¡¡it¡¡is¡¡not¡¡possible¡¡to¡¡prove¡¡an¡¡affirmative
proposition¡¡in¡¡this¡¡way£»¡¡but¡¡a¡¡negative¡¡proposition¡¡may¡¡be¡¡proved¡£
An¡¡affirmative¡¡proposition¡¡is¡¡not¡¡proved¡¡because¡¡both¡¡premisses¡¡of¡¡the
new¡¡syllogism¡¡are¡¡not¡¡affirmative¡¡£¨for¡¡the¡¡conclusion¡¡is¡¡negative£©¡¡but
an¡¡affirmative¡¡proposition¡¡is¡¡£¨as¡¡we¡¡saw£©¡¡proved¡¡from¡¡premisses
which¡¡are¡¡both¡¡affirmative¡£¡¡The¡¡negative¡¡is¡¡proved¡¡as¡¡follows¡£¡¡Let¡¡A
belong¡¡to¡¡all¡¡B£»¡¡and¡¡to¡¡no¡¡C£º¡¡we¡¡conclude¡¡that¡¡B¡¡belongs¡¡to¡¡no¡¡C¡£¡¡If
then¡¡it¡¡is¡¡assumed¡¡that¡¡B¡¡belongs¡¡to¡¡all¡¡A£»¡¡it¡¡is¡¡necessary¡¡that¡¡A
should¡¡belong¡¡to¡¡no¡¡C£º¡¡for¡¡we¡¡get¡¡the¡¡second¡¡figure£»¡¡with¡¡B¡¡as¡¡middle¡£
But¡¡if¡¡the¡¡premiss¡¡AB¡¡was¡¡negative£»¡¡and¡¡the¡¡other¡¡affirmative£»¡¡we
shall¡¡have¡¡the¡¡first¡¡figure¡£¡¡For¡¡C¡¡belongs¡¡to¡¡all¡¡A¡¡and¡¡B¡¡to¡¡no¡¡C£»
consequently¡¡B¡¡belongs¡¡to¡¡no¡¡A£º¡¡neither¡¡then¡¡does¡¡A¡¡belong¡¡to¡¡B¡£
Through¡¡the¡¡conclusion£»¡¡therefore£»¡¡and¡¡one¡¡premiss£»¡¡we¡¡get¡¡no
syllogism£»¡¡but¡¡if¡¡another¡¡premiss¡¡is¡¡assumed¡¡in¡¡addition£»¡¡a
syllogism¡¡will¡¡be¡¡possible¡£¡¡But¡¡if¡¡the¡¡syllogism¡¡not¡¡universal£»¡¡the
universal¡¡premiss¡¡cannot¡¡be¡¡proved£»¡¡for¡¡the¡¡same¡¡reason¡¡as¡¡we¡¡gave
above£»¡¡but¡¡the¡¡particular¡¡premiss¡¡can¡¡be¡¡proved¡¡whenever¡¡the¡¡universal
statement¡¡is¡¡affirmative¡£¡¡Let¡¡A¡¡belong¡¡to¡¡all¡¡B£»¡¡and¡¡not¡¡to¡¡all¡¡C£º¡¡the
conclusion¡¡is¡¡BC¡£¡¡If¡¡then¡¡it¡¡is¡¡assumed¡¡that¡¡B¡¡belongs¡¡to¡¡all¡¡A£»¡¡but
not¡¡to¡¡all¡¡C£»¡¡A¡¡will¡¡not¡¡belong¡¡to¡¡some¡¡C£»¡¡B¡¡being¡¡middle¡£¡¡But¡¡if
the¡¡universal¡¡premiss¡¡is¡¡negative£»¡¡the¡¡premiss¡¡AC¡¡will¡¡not¡¡be
demonstrated¡¡by¡¡the¡¡conversion¡¡of¡¡AB£º¡¡for¡¡it¡¡turns¡¡out¡¡that¡¡either
both¡¡or¡¡one¡¡of¡¡the¡¡premisses¡¡is¡¡negative£»¡¡consequently¡¡a¡¡syllogism
will¡¡not¡¡be¡¡possible¡£¡¡But¡¡the¡¡proof¡¡will¡¡proceed¡¡as¡¡in¡¡the¡¡universal
syllogisms£»¡¡if¡¡it¡¡is¡¡assumed¡¡that¡¡A¡¡belongs¡¡to¡¡some¡¡of¡¡that¡¡to¡¡some¡¡of
which¡¡B¡¡does¡¡not¡¡belong¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡7
¡¡¡¡In¡¡the¡¡third¡¡figure£»¡¡when¡¡both¡¡premisses¡¡are¡¡taken¡¡universally£»¡¡it
is¡¡not¡¡possible¡¡to¡¡prove¡¡them¡¡reciprocally£º¡¡for¡¡that¡¡which¡¡is
universal¡¡is¡¡proved¡¡through¡¡statements¡¡which¡¡are¡¡universal£»¡¡but¡¡the
conclusion¡¡in¡¡this¡¡figure¡¡is¡¡always¡¡particular£»¡¡so¡¡that¡¡it¡¡is¡¡clear
that¡¡it¡¡is¡¡not¡¡possible¡¡at¡¡all¡¡to¡¡prove¡¡through¡¡this¡¡figure¡¡the
universal¡¡premiss¡£¡¡But¡¡if¡¡one¡¡premiss¡¡is¡¡universal£»¡¡the¡¡other
particular£»¡¡proof¡¡of¡¡the¡¡latter¡¡will¡¡sometimes¡¡be¡¡possible£»
sometimes¡¡not¡£¡¡When¡¡both¡¡the¡¡premisses¡¡assumed¡¡are¡¡affirmative£»¡¡and
the¡¡universal¡¡concerns¡¡the¡¡minor¡¡extreme£»¡¡proof¡¡will¡¡be¡¡possible£»