°Ëϲµç×ÓÊé > ¾­¹ÜÆäËûµç×ÓÊé > prior analytics >

µÚ6²¿·Ö

prior analytics-µÚ6²¿·Ö

С˵£º prior analytics ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡






continuous¡¡for¡¡ever£»¡¡although¡¡if¡¡a¡¡man¡¡does¡¡exist£»¡¡it¡¡comes¡¡about



either¡¡necessarily¡¡or¡¡generally£©¡£¡¡In¡¡another¡¡sense¡¡the¡¡expression



means¡¡the¡¡indefinite£»¡¡which¡¡can¡¡be¡¡both¡¡thus¡¡and¡¡not¡¡thus£»¡¡e¡£g¡£¡¡an



animal's¡¡walking¡¡or¡¡an¡¡earthquake's¡¡taking¡¡place¡¡while¡¡it¡¡is



walking£»¡¡or¡¡generally¡¡what¡¡happens¡¡by¡¡chance£º¡¡for¡¡none¡¡of¡¡these



inclines¡¡by¡¡nature¡¡in¡¡the¡¡one¡¡way¡¡more¡¡than¡¡in¡¡the¡¡opposite¡£



¡¡¡¡That¡¡which¡¡is¡¡possible¡¡in¡¡each¡¡of¡¡its¡¡two¡¡senses¡¡is¡¡convertible¡¡into



its¡¡opposite£»¡¡not¡¡however¡¡in¡¡the¡¡same¡¡way£º¡¡but¡¡what¡¡is¡¡natural¡¡is



convertible¡¡because¡¡it¡¡does¡¡not¡¡necessarily¡¡belong¡¡£¨for¡¡in¡¡this



sense¡¡it¡¡is¡¡possible¡¡that¡¡a¡¡man¡¡should¡¡not¡¡grow¡¡grey£©¡¡and¡¡what¡¡is



indefinite¡¡is¡¡convertible¡¡because¡¡it¡¡inclines¡¡this¡¡way¡¡no¡¡more¡¡than



that¡£¡¡Science¡¡and¡¡demonstrative¡¡syllogism¡¡are¡¡not¡¡concerned¡¡with



things¡¡which¡¡are¡¡indefinite£»¡¡because¡¡the¡¡middle¡¡term¡¡is¡¡uncertain£»¡¡but



they¡¡are¡¡concerned¡¡with¡¡things¡¡that¡¡are¡¡natural£»¡¡and¡¡as¡¡a¡¡rule



arguments¡¡and¡¡inquiries¡¡are¡¡made¡¡about¡¡things¡¡which¡¡are¡¡possible¡¡in



this¡¡sense¡£¡¡Syllogisms¡¡indeed¡¡can¡¡be¡¡made¡¡about¡¡the¡¡former£»¡¡but¡¡it



is¡¡unusual¡¡at¡¡any¡¡rate¡¡to¡¡inquire¡¡about¡¡them¡£



¡¡¡¡These¡¡matters¡¡will¡¡be¡¡treated¡¡more¡¡definitely¡¡in¡¡the¡¡sequel£»¡¡our



business¡¡at¡¡present¡¡is¡¡to¡¡state¡¡the¡¡moods¡¡and¡¡nature¡¡of¡¡the



syllogism¡¡made¡¡from¡¡possible¡¡premisses¡£¡¡The¡¡expression¡¡'it¡¡is¡¡possible



for¡¡this¡¡to¡¡belong¡¡to¡¡that'¡¡may¡¡be¡¡understood¡¡in¡¡two¡¡senses£º¡¡'that'



may¡¡mean¡¡either¡¡that¡¡to¡¡which¡¡'that'¡¡belongs¡¡or¡¡that¡¡to¡¡which¡¡it¡¡may



belong£»¡¡for¡¡the¡¡expression¡¡'A¡¡is¡¡possible¡¡of¡¡the¡¡subject¡¡of¡¡B'¡¡means



that¡¡it¡¡is¡¡possible¡¡either¡¡of¡¡that¡¡of¡¡which¡¡B¡¡is¡¡stated¡¡or¡¡of¡¡that



of¡¡which¡¡B¡¡may¡¡possibly¡¡be¡¡stated¡£¡¡It¡¡makes¡¡no¡¡difference¡¡whether¡¡we



say£»¡¡A¡¡is¡¡possible¡¡of¡¡the¡¡subject¡¡of¡¡B£»¡¡or¡¡all¡¡B¡¡admits¡¡of¡¡A¡£¡¡It¡¡is



clear¡¡then¡¡that¡¡the¡¡expression¡¡'A¡¡may¡¡possibly¡¡belong¡¡to¡¡all¡¡B'



might¡¡be¡¡used¡¡in¡¡two¡¡senses¡£¡¡First¡¡then¡¡we¡¡must¡¡state¡¡the¡¡nature¡¡and



characteristics¡¡of¡¡the¡¡syllogism¡¡which¡¡arises¡¡if¡¡B¡¡is¡¡possible¡¡of



the¡¡subject¡¡of¡¡C£»¡¡and¡¡A¡¡is¡¡possible¡¡of¡¡the¡¡subject¡¡of¡¡B¡£¡¡For¡¡thus¡¡both



premisses¡¡are¡¡assumed¡¡in¡¡the¡¡mode¡¡of¡¡possibility£»¡¡but¡¡whenever¡¡A¡¡is



possible¡¡of¡¡that¡¡of¡¡which¡¡B¡¡is¡¡true£»¡¡one¡¡premiss¡¡is¡¡a¡¡simple



assertion£»¡¡the¡¡other¡¡a¡¡problematic¡£¡¡Consequently¡¡we¡¡must¡¡start¡¡from



premisses¡¡which¡¡are¡¡similar¡¡in¡¡form£»¡¡as¡¡in¡¡the¡¡other¡¡cases¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡14







¡¡¡¡Whenever¡¡A¡¡may¡¡possibly¡¡belong¡¡to¡¡all¡¡B£»¡¡and¡¡B¡¡to¡¡all¡¡C£»¡¡there



will¡¡be¡¡a¡¡perfect¡¡syllogism¡¡to¡¡prove¡¡that¡¡A¡¡may¡¡possibly¡¡belong¡¡to¡¡all



C¡£¡¡This¡¡is¡¡clear¡¡from¡¡the¡¡definition£º¡¡for¡¡it¡¡was¡¡in¡¡this¡¡way¡¡that¡¡we



explained¡¡'to¡¡be¡¡possible¡¡for¡¡one¡¡term¡¡to¡¡belong¡¡to¡¡all¡¡of¡¡another'¡£



Similarly¡¡if¡¡it¡¡is¡¡possible¡¡for¡¡A¡¡to¡¡belong¡¡no¡¡B£»¡¡and¡¡for¡¡B¡¡to



belong¡¡to¡¡all¡¡C£»¡¡then¡¡it¡¡is¡¡possible¡¡for¡¡A¡¡to¡¡belong¡¡to¡¡no¡¡C¡£¡¡For



the¡¡statement¡¡that¡¡it¡¡is¡¡possible¡¡for¡¡A¡¡not¡¡to¡¡belong¡¡to¡¡that¡¡of¡¡which



B¡¡may¡¡be¡¡true¡¡means¡¡£¨as¡¡we¡¡saw£©¡¡that¡¡none¡¡of¡¡those¡¡things¡¡which¡¡can



possibly¡¡fall¡¡under¡¡the¡¡term¡¡B¡¡is¡¡left¡¡out¡¡of¡¡account¡£¡¡But¡¡whenever



A¡¡may¡¡belong¡¡to¡¡all¡¡B£»¡¡and¡¡B¡¡may¡¡belong¡¡to¡¡no¡¡C£»¡¡then¡¡indeed¡¡no



syllogism¡¡results¡¡from¡¡the¡¡premisses¡¡assumed£»¡¡but¡¡if¡¡the¡¡premiss¡¡BC¡¡is



converted¡¡after¡¡the¡¡manner¡¡of¡¡problematic¡¡propositions£»¡¡the¡¡same



syllogism¡¡results¡¡as¡¡before¡£¡¡For¡¡since¡¡it¡¡is¡¡possible¡¡that¡¡B¡¡should



belong¡¡to¡¡no¡¡C£»¡¡it¡¡is¡¡possible¡¡also¡¡that¡¡it¡¡should¡¡belong¡¡to¡¡all¡¡C¡£



This¡¡has¡¡been¡¡stated¡¡above¡£¡¡Consequently¡¡if¡¡B¡¡is¡¡possible¡¡for¡¡all¡¡C£»



and¡¡A¡¡is¡¡possible¡¡for¡¡all¡¡B£»¡¡the¡¡same¡¡syllogism¡¡again¡¡results¡£



Similarly¡¡if¡¡in¡¡both¡¡the¡¡premisses¡¡the¡¡negative¡¡is¡¡joined¡¡with¡¡'it



is¡¡possible'£º¡¡e¡£g¡£¡¡if¡¡A¡¡may¡¡belong¡¡to¡¡none¡¡of¡¡the¡¡Bs£»¡¡and¡¡B¡¡to¡¡none¡¡of



the¡¡Cs¡£¡¡No¡¡syllogism¡¡results¡¡from¡¡the¡¡assumed¡¡premisses£»¡¡but¡¡if¡¡they



are¡¡converted¡¡we¡¡shall¡¡have¡¡the¡¡same¡¡syllogism¡¡as¡¡before¡£¡¡It¡¡is



clear¡¡then¡¡that¡¡if¡¡the¡¡minor¡¡premiss¡¡is¡¡negative£»¡¡or¡¡if¡¡both¡¡premisses



are¡¡negative£»¡¡either¡¡no¡¡syllogism¡¡results£»¡¡or¡¡if¡¡one¡¡it¡¡is¡¡not



perfect¡£¡¡For¡¡the¡¡necessity¡¡results¡¡from¡¡the¡¡conversion¡£



¡¡¡¡But¡¡if¡¡one¡¡of¡¡the¡¡premisses¡¡is¡¡universal£»¡¡the¡¡other¡¡particular£»¡¡when



the¡¡major¡¡premiss¡¡is¡¡universal¡¡there¡¡will¡¡be¡¡a¡¡perfect¡¡syllogism¡£



For¡¡if¡¡A¡¡is¡¡possible¡¡for¡¡all¡¡B£»¡¡and¡¡B¡¡for¡¡some¡¡C£»¡¡then¡¡A¡¡is¡¡possible



for¡¡some¡¡C¡£¡¡This¡¡is¡¡clear¡¡from¡¡the¡¡definition¡¡of¡¡being¡¡possible¡£¡¡Again



if¡¡A¡¡may¡¡belong¡¡to¡¡no¡¡B£»¡¡and¡¡B¡¡may¡¡belong¡¡to¡¡some¡¡of¡¡the¡¡Cs£»¡¡it¡¡is



necessary¡¡that¡¡A¡¡may¡¡possibly¡¡not¡¡belong¡¡to¡¡some¡¡of¡¡the¡¡Cs¡£¡¡The



proof¡¡is¡¡the¡¡same¡¡as¡¡above¡£¡¡But¡¡if¡¡the¡¡particular¡¡premiss¡¡is¡¡negative£»



and¡¡the¡¡universal¡¡is¡¡affirmative£»¡¡the¡¡major¡¡still¡¡being¡¡universal



and¡¡the¡¡minor¡¡particular£»¡¡e¡£g¡£¡¡A¡¡is¡¡possible¡¡for¡¡all¡¡B£»¡¡B¡¡may¡¡possibly



not¡¡belong¡¡to¡¡some¡¡C£»¡¡then¡¡a¡¡clear¡¡syllogism¡¡does¡¡not¡¡result¡¡from



the¡¡assumed¡¡premisses£»¡¡but¡¡if¡¡the¡¡particular¡¡premiss¡¡is¡¡converted



and¡¡it¡¡is¡¡laid¡¡down¡¡that¡¡B¡¡possibly¡¡may¡¡belong¡¡to¡¡some¡¡C£»¡¡we¡¡shall



have¡¡the¡¡same¡¡conclusion¡¡as¡¡before£»¡¡as¡¡in¡¡the¡¡cases¡¡given¡¡at¡¡the



beginning¡£



¡¡¡¡But¡¡if¡¡the¡¡major¡¡premiss¡¡is¡¡the¡¡minor¡¡universal£»¡¡whether¡¡both¡¡are



affirmative£»¡¡or¡¡negative£»¡¡or¡¡different¡¡in¡¡quality£»¡¡or¡¡if¡¡both¡¡are



indefinite¡¡or¡¡particular£»¡¡in¡¡no¡¡way¡¡will¡¡a¡¡syllogism¡¡be¡¡possible¡£



For¡¡nothing¡¡prevents¡¡B¡¡from¡¡reaching¡¡beyond¡¡A£»¡¡so¡¡that¡¡as¡¡predicates



cover¡¡unequal¡¡areas¡£¡¡Let¡¡C¡¡be¡¡that¡¡by¡¡which¡¡B¡¡extends¡¡beyond¡¡A¡£¡¡To¡¡C



it¡¡is¡¡not¡¡possible¡¡that¡¡A¡¡should¡¡belong¡­either¡¡to¡¡all¡¡or¡¡to¡¡none¡¡or¡¡to



some¡¡or¡¡not¡¡to¡¡some£»¡¡since¡¡premisses¡¡in¡¡the¡¡mode¡¡of¡¡possibility¡¡are



convertible¡¡and¡¡it¡¡is¡¡possible¡¡for¡¡B¡¡to¡¡belong¡¡to¡¡more¡¡things¡¡than¡¡A



can¡£¡¡Further£»¡¡this¡¡is¡¡obvious¡¡if¡¡we¡¡take¡¡terms£»¡¡for¡¡if¡¡the¡¡premisses



are¡¡as¡¡assumed£»¡¡the¡¡major¡¡term¡¡is¡¡both¡¡possible¡¡for¡¡none¡¡of¡¡the



minor¡¡and¡¡must¡¡belong¡¡to¡¡all¡¡of¡¡it¡£¡¡Take¡¡as¡¡terms¡¡common¡¡to¡¡all¡¡the



cases¡¡under¡¡consideration¡¡'animal'¡­'white'¡­'man'£»¡¡where¡¡the¡¡major



belongs¡¡necessarily¡¡to¡¡the¡¡minor£»¡¡'animal'¡­'white'¡­'garment'£»¡¡where¡¡it



is¡¡not¡¡possible¡¡that¡¡the¡¡major¡¡should¡¡belong¡¡to¡¡the¡¡minor¡£¡¡It¡¡is¡¡clear



then¡¡that¡¡if¡¡the¡¡terms¡¡are¡¡related¡¡in¡¡this¡¡manner£»¡¡no¡¡syllogism



results¡£¡¡For¡¡every¡¡syllogism¡¡proves¡¡that¡¡something¡¡belongs¡¡either



simply¡¡or¡¡necessarily¡¡or¡¡possibly¡£¡¡It¡¡is¡¡clear¡¡that¡¡there¡¡is¡¡no



proof¡¡of¡¡the¡¡first¡¡or¡¡of¡¡the¡¡second¡£¡¡For¡¡the¡¡affirmative¡¡is



destroyed¡¡by¡¡the¡¡negative£»¡¡and¡¡the¡¡negative¡¡by¡¡the¡¡affirmative¡£



There¡¡remains¡¡the¡¡proof¡¡of¡¡possibility¡£¡¡But¡¡this¡¡is¡¡impossible¡£¡¡For¡¡it



has¡¡been¡¡proved¡¡that¡¡if¡¡the¡¡terms¡¡are¡¡related¡¡in¡¡this¡¡manner¡¡it¡¡is



both¡¡necessary¡¡that¡¡the¡¡major¡¡should¡¡belong¡¡to¡¡all¡¡the¡¡minor¡¡and¡¡not



possible¡¡that¡¡it¡¡should¡¡belong¡¡to¡¡any¡£¡¡Consequently¡¡there¡¡cannot¡¡be



a¡¡syllogism¡¡to¡¡prove¡¡the¡¡possibility£»¡¡for¡¡the¡¡necessary¡¡£¨as¡¡we¡¡stated£©



is¡¡not¡¡possible¡£



¡¡¡¡It¡¡is¡¡clear¡¡that¡¡if¡¡the¡¡terms¡¡are¡¡universal¡¡in¡¡possible¡¡premisses



a¡¡syllogism¡¡always¡¡results¡¡in¡¡the¡¡first¡¡figure£»¡¡whether¡¡they¡¡are



affirmative¡¡or¡¡negative£»¡¡only¡¡a¡¡perfect¡¡syllogism¡¡results¡¡in¡¡the¡¡first



case£»¡¡an¡¡imperfect¡¡in¡¡the¡¡second¡£¡¡But¡¡possibility¡¡must¡¡be¡¡understood



according¡¡to¡¡the¡¡definition¡¡laid¡¡down£»¡¡not¡¡as¡¡covering¡¡necessity¡£¡¡This



is¡¡sometimes¡¡forgotten¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡15







¡¡¡¡If¡¡one¡¡premiss¡¡is¡¡a¡¡simple¡¡proposition£»¡¡the¡¡other¡¡a¡¡problematic£»



whenever¡¡the¡¡major¡¡premiss¡¡indicates¡¡possibility¡¡all¡¡the¡¡syllogisms



will¡¡be¡¡perfect¡¡and¡¡establish¡¡possibility¡¡in¡¡the¡¡sense¡¡defined£»¡¡but



whenever¡¡the¡¡minor¡¡premiss¡¡indicates¡¡possibility¡¡all¡¡the¡¡syllogisms



will¡¡be¡¡imperfect£»¡¡and¡¡those¡¡which¡¡are¡¡negative¡¡will¡¡establish¡¡not



possibility¡¡according¡¡to¡¡the¡¡definition£»¡¡but¡¡that¡¡the¡¡major¡¡does¡¡not



necessarily¡¡belong¡¡to¡¡any£»¡¡or¡¡to¡¡all£»¡¡of¡¡the¡¡minor¡£¡¡For¡¡if¡¡this¡¡is¡¡so£»



we¡¡say¡¡it¡¡is¡¡possible¡¡that¡¡it¡¡should¡¡belong¡¡to¡¡none¡¡or¡¡not¡¡to¡¡all¡£¡¡Let



A¡¡be¡¡possible¡¡for¡¡all¡¡B£»¡¡and¡¡let¡¡B¡¡belong¡¡to¡¡all¡¡C¡£¡¡Since¡¡C¡¡falls



under¡¡B£»¡¡and¡¡A¡¡is¡¡possible¡¡for¡¡all¡¡B£»¡¡clearly¡¡it¡¡is¡¡possible¡¡for¡¡all¡¡C



also¡£¡¡So¡¡a¡¡perfect¡¡syllogism¡¡results¡£¡¡Likewise¡¡if¡¡the¡¡premiss¡¡AB¡¡is



negative£»¡¡and¡¡the¡¡premiss¡¡BC¡¡is¡¡affirmative£»¡¡the¡¡former¡¡stating



possible£»¡¡the¡¡latter¡¡simple¡¡attribution£»¡¡a¡¡perfect¡¡syllogism¡¡results



proving¡¡that¡¡A¡¡possibly¡¡belongs¡¡to¡¡no¡¡C¡£



¡¡¡¡It¡¡is¡¡clear¡¡that¡¡perfect¡¡syllogisms¡¡result¡¡if¡¡the¡¡minor¡¡premiss



states¡¡simple¡¡belonging£º¡¡but¡¡that¡¡syllogisms¡¡will¡¡result¡¡if¡¡the



modality¡¡of¡¡the¡¡premisses¡¡is¡¡reversed£»¡¡must¡¡be¡¡proved¡¡per¡¡impossibile¡£



At¡¡the¡¡same¡¡time¡¡it¡¡will¡¡be¡¡evident¡¡that¡¡they¡¡are¡¡imperfect£º¡¡for¡¡the



proof¡¡proceeds¡¡not¡¡from¡¡the¡¡premisses¡¡assumed¡£¡¡First¡¡we¡¡must¡¡state



that¡¡if¡¡B's¡¡being¡¡follows¡¡necessarily¡¡from¡¡A's¡¡being£»¡¡B's



possibility¡¡will¡¡follow¡¡necessarily¡¡from¡¡A's¡¡possibility¡£¡¡Suppose£»¡¡the



terms¡¡being¡¡so¡¡related£»¡¡that¡¡A¡¡is¡¡possible£»¡¡and¡¡B¡¡is¡¡impossible¡£¡¡If



then¡¡that¡¡which¡¡is¡¡possible£»¡¡when¡¡it¡¡is¡¡possible¡¡for¡¡it¡¡to¡¡be£»¡¡might



happen£»¡¡and¡¡if¡¡that¡¡which¡¡is¡¡impossible£»¡¡when¡¡it¡¡is¡¡impossible£»



could¡¡not¡¡happen£»¡¡and¡¡if¡¡at¡¡the¡¡same¡¡time¡¡A¡¡is¡¡possible¡¡and¡¡B



impossible£»¡¡it¡¡would¡¡be¡¡possible¡¡for¡¡A¡¡to¡¡happen¡¡without¡¡B£»¡¡and¡¡if



to¡¡happen£»¡¡then¡¡to¡¡be¡£¡¡For¡¡that¡¡which¡¡has¡¡happened£»¡¡when¡¡it¡¡has



happened£»¡¡is¡£¡¡But¡¡we¡¡must¡¡take¡¡the¡¡impossible¡¡and¡¡the¡¡possible¡¡not



only¡¡in¡¡the¡¡sphere¡¡of¡¡becoming£»¡¡but¡¡also¡¡in¡¡the¡¡spheres¡¡of¡¡truth¡¡and



predicability£»¡¡and¡¡the¡¡various¡¡other¡¡spheres¡¡in¡¡which¡¡we¡¡speak¡¡of



the¡¡possible£º¡¡for¡¡it¡¡will¡¡be¡¡alike¡¡in¡¡all¡£¡¡Further¡¡we¡¡must



understand¡¡the¡¡statement¡¡that¡¡B's¡¡being¡¡depends¡¡on¡¡A's¡¡being£»¡¡not¡¡as



meaning¡¡that¡¡if¡¡some¡¡single¡¡thing¡¡A¡¡is£»¡¡B¡¡will¡¡be£º¡¡for¡¡nothing¡¡follows



of¡¡necessity¡¡from¡¡the¡¡being¡¡of¡¡some¡¡one¡¡thing£»¡¡but¡¡from¡¡two¡¡at



least£»¡¡i¡£e¡£¡¡when¡¡the¡¡premisses¡¡are¡¡related¡¡in¡¡the¡¡manner¡¡stated¡¡to



be¡¡that¡¡of¡¡the¡¡syllogism¡£¡¡For¡¡if¡¡C¡¡is¡¡predicated¡¡of¡¡D£»¡¡and¡¡D¡¡of¡¡F£»



then¡¡C¡¡is¡¡necessarily¡¡predicated¡¡of¡¡F¡£¡¡And¡¡if¡¡each¡¡is¡¡possible£»¡¡the



conclusion¡¡also¡¡is¡¡possible¡£¡¡If¡¡then£»¡¡for¡¡example£»¡¡one¡¡should¡¡indicate



the¡¡premisses¡¡by¡¡A£»¡¡and¡¡the¡¡conclusion¡¡by¡¡B£»

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨0£©

Äã¿ÉÄÜϲ»¶µÄ