认识与谬误-第43部分
按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
嶂廊绾卧诖看獾淖⒋看獾奈灰坪陀烧饬街侄懒⒃硕铣傻脑硕淝帧5谝桓黾负窝У比徊皇墙⒃诖看舛裙娓拍畹幕∩希嵌陨淼母芯跻蛩刈鞒隽诵矶嘞灾娜貌健S谑牵夤塾昧街植煌幕径攘坷此得鳎海ㄖ毕叩模┏ざ群徒嵌龋ㄔ驳亩攘浚V毕弑还瓜胛招缘目啥奈锾澹扛耍嵌缺还瓜胛惶踔毕呦喽杂诹硪惶踔毕叩淖ㄓ萌绱嘶龅幕〔饬浚N抟傻兀嗣谴永匆裁挥幸筇乇鹬っ饔孟嗤淖谠慊龅慕嵌认嗟取:苋菀滓龉赜诮嵌鹊母酱狻J瓜叨蝏绕它与c的交点如此转动,以致画出角 α (图 22),在与c重合后再使它绕它与a的交点转动,直到它与a重合为止,这样便画出用 β ,我们将在同一指向通过角 μ 把 b从它的初始位置转到它的最终位置。因此,外角 μ = α + β ,因为 μ + γ = 2R,所以 α + β + γ = 2R。把在它们的平面内在位置1处相交的刚性的线系统a,b,c移动到位置2(图23),线段a总是仍旧在它自身之内,纯粹的运动将不会引起角度的变化。如此产生的三角形1,2,3的内角之和显然是2R。相同的考虑也免除了平行线的性质。
关于绕几个点的相继转动是否与绕一点转动等价,纯粹的位移是否完全可能的疑问——当用不同于零的曲率的曲面代替欧几里得平面时,这一点受到辩护——在正在考虑的期间从来也不会在纯朴和快乐地发现这些关系的心智中出现。欧几里得在他的全等原理中刻意回避和隐蔽引入的刚体运动的研究,到今天还是最适合几何学基础教育的工具。借助发现观念的方法能最佳地使它为初学者拥有。
第十三节
当几何学变成职业的和学者的沉思的科目时,事物的这种健全的和朴素的概念消失了,几何学的处理经历了本质的修正。该科目现在必须为个别的概观起见综合这个部门的知识,必须把能够直接辨认的东西与可以演绎和已被演绎的东西分开,必须明确减少演绎的头绪。为了教育的目的,人们把最简单的原理、最容易获得和明显地摆脱了怀疑和矛盾的东西放在开头,使下余的东西基于它们之上。人们竭尽全力简化这些初始原理,在欧几里得的体系中可以观察到这一点。通过这种用别的概念支持每一个概念,把尽可能小的范围留给直接的知识的努力,几何学逐渐离开了它从中起源的经验的土地。人们习惯于使自己认为推导的真理比直接知觉的真理更高级,并最终开始要求从来也没有人怀疑的命题的证明。就这样,具有其逻辑完美和优雅的欧几里得体系出现了——为了制止诡辩派的猛攻,以致按惯例也会这样进行的。可是,这种把一连串的命题放在任意选取的演绎思路之上的人为方法不仅隐藏了研究的道路,而且也完全丧失了对几何学原理之间各种有机关联的洞察。与富有成果的、多产的研究者相比较,这个体系更适合于生产心智狭窄的和缺乏独创性的学究。当偏好对他人的智力成果作奴性评论的经院哲学在思想者中几乎不培育对于他们的基本假定的合理性的任何敏感性,并且通过补偿的方式在他们中间鼓励对于逻辑演绎形式的夸大的尊重时,这些条件并未得到改善。从欧几里得到高斯的整个时期,都或多或少地遭受了来自这种心智的影响。
第十四节
在欧几里得把他的体系建立于其上的命题中,可以找到所谓的第五公设(也称为第七公理,有人称为第十二公理):“如果一条直线与两条直线相交,以致在它的同一侧的两个内角合在一起小于两直角,那么这些直线在被连续延长时,最终将在其角是小于两直角的那侧处相交。”欧几里得容易证明,如果一条直线落在另外两条直线上时,它使错角彼此相等,那么这两条直线将不相交,而是平行的。但是,对于逆即平行使落在它们之上的每一直线的错角相等的证明,他却不得不诉诸第五公设。这个逆等价于这样的命题:通过一点只能画一条线与直线平行。进而,由于借助这个逆能够证明三角形的角之和等于两直角,以及从这个定理再次得出第一个定理的事实,赋予欧几里得几何学第五公设以独特的和基本的意义的、所讨论的命题之间的关系变得清楚明白了。
第十五节
缓慢会聚的线的相交处在作图和观察的范围之外。因此,可以理解,鉴于包含在第五公设中的断言的巨大重要性,欧几里得的后继者由于他习惯于严格性,竟然甚至在古代就绷紧每一根神经证明这个公设,或者用某个直接明显的命题代替它。为了把这个第五公设从欧几里得的其他假定中演绎出来,从欧几里得到高斯时代人们就作出了无数无效的努力。出于十足渴望科学的阐释,在追求潜藏的真理源泉中花费了诸多世纪的辛劳,正是这些人奉献的令人钦佩的场景,可是从来没有一个理论家或实践者实际上怀疑过这一切!我们以热切的好奇心追踪寓居于人类对知识这种追求中的道德力量的固执表达,我们满意地注意到,探究者的失败如何逐渐地导致他们察觉几何学的真实基础是经验。我们将使我们自己满足于几个例子。
第十六节
在其对平行理论的贡献方面著名的探究者当中,有意大利人萨凯里(Saccheri)和德国数学家兰伯特(Lambert)。为了使他们的进攻模式变得可以理解,我们将首先谈到,我们相信我们经常观察的矩形和正方形的存在,在不借助第五公设的情况下无法证明,例如,让我们考虑两个在A和D具有直角的全等的等腰三角形ABC,DBC(图24), 并设它们在它们的斜边BC处在一起,以致形成等边的四边形ABCD,欧几里得的头27个命题不足以决定在B和C处的两个相等的(直)角的特点和大小。因为长度的度量和角度的度量根本不同且不可直接比较;因此,关于边和角的相关的头一批命题仅仅是定性的,关于像角之和这样的角的定量定理的绝对必要性从而也是如此。进而要谈到的是,类似于欧几里的27个平面几何命题的定理也可以针对球面和具有恒定负曲率的曲面建立,在这些案例中类似的作图分别在B和C处给出钝角和锐角。
第十七节
萨凯里的主要成就是他陈述这个问题的形式。如果第五公设包含在余下的欧几里得假定中,那么就可能在没有它帮助的情况下证明,在 A和B处具有直角且AC=BD的四边形ABCD(图25)中,在C和D处的角同样也是直角。另一方面,在这个项目中,C和D或是钝角或是锐角的假定将导致矛盾。换句话说,萨凯里力图从直角、钝角或锐角的假设引出结论。他表明,如果证明这些假设的每一个在一个案例中成立,那么它将在所有案例中都成立。为了证明锐角、直角或钝角的假设的普适有效性,仅仅必须拥有一个其角 2R的三角形。值得注意的是这一事实:萨凯里也谈到支持直角假设的生理-几何学实验。如果线段CD(图25)与垂直于直线AB的相等的垂线的两个端点连结,从第一条线的任何一点N出发在AB上终止的垂线即NM等于CA=DB,那么直角的假设被证明是正确的。萨凯里如实地不认为,与另一个直线等距的线本身是直线并非自明。只要想一想平行于球上的大圆的圆就可以了,该圆没有描绘球上的最短线,不能使它的两面全等。
直角假设正确性的另一个实验证明如下。如果表明半圆中的角(图 26)是直角,即 α + β = R,那么2 α + 2 β = 2R是三角形ABC的角之和。如果使半径在半圆上三次对向(subtend),且连结第一个和第四个端点的线通过圆心,那么我们将在C处有(图27)3 α = 2R,从而三个三角形的每一个将有角之和2R。不同大小的等角三角形(相似三角形)的存在同样有待于实验证明。就图28而言,若在B和C处的角给出 β + δ + γ + ε = 4R,则四边形BCB’C’的角之和也是4R。甚至沃利斯(1663)把他对第五公设的证明建立在相似三角形存在的假定上,近代几何学家德尔布吕夫(Delboeuf)从相似假定演绎出整个欧几里得几何学。
萨凯里相信,他能够轻而易举地驳倒钝角假设。但是,锐角假设却把困难摆在他的面前,他在对所期望的矛盾的寻求中被带到一个意义最深远的结论,罗巴切夫斯基和鲍耶随后用他们自己的方法重新发现了这些结论。他最终感到不得不把最后命名的假设作为与直线的本性不相容的东西加以拒斥;因为它导致在无穷远处相交的、即在那里具有公共垂线的不同种类的直线之假定。萨凯里在预知和提升后继的阐明这些问题的劳动中没有作许多事情,不过显示出某种倾向于传统观点的偏见。
第十八节
兰伯特的专题论文(1766)在方法上与萨凯里的方法有关联,但是它在其结论上更进一步,并且给出较少受约束的视野的证据。兰伯特由考虑具有三个直角的四边形出发,审查了从第四个角是直角、钝角或锐角的假定中可能得出的推论。他发觉图形的相似与第二和第三个假定不相容。他发现,要求三角形角之和超过2R的钝角案例在球面几何学中成为真实的,在球面几何学中平行线的困难完全消失了。这导致他猜想,在其中三角形的角之和小于2R的锐角案例可能在具有虚半径的球面上实现。用之和背离2R的量在两个案例中正比于三角形的面积,通过适当地把大三角形分为小三角形可以证明这一点,小三角形在减小时可以变得像我们乐意地那样趋近角之和2R。兰伯特在这个概念上推进得十分接近现代几何学家的观点。人们公认,虚半径r'…1'的球不是可以具体化的几何构图,但是在解析上它是具有负的恒定高斯曲率度量的曲面。从这个例子再次显而易见,在完全缺乏其他支撑点,在有用的办法以其价值必须受到尊重的时期,用符号实验如何也可以把探究引向正确的路线。甚至高斯也显露出具有虚半径球的思想,这一点从他的关于圆周的公式(致舒马赫(Schumacher),1831年7月12日)来看是很明显的。可是,兰伯特实际上不顾一切地相信,他如此接近第五公设的证明,以致能够很容易地提供所需要的东西。
第十九节
现在,我们可以转向其观点对于几何学概念具有最根本意义,但却仅仅用口头或信件简要报告他们看法的研究者。“高斯认为几何学只不过是在逻辑上连贯的作图体系,它具有作为公理被置于顶点的平行理论;可是,他得以确信,这个命题不能被证明,尽管人们从经验——例如从连结布罗肯( Brocken)、霍恩哈根(Hohenhagen)和因塞尔斯堡(Inselsberg)的三角形的角度——知道它是近似正确的。但是,如果不承认这个公理,那么他坚决主张,由于不接受它便产生了不同的和完全独立的几何学,他曾经研究过这种几何学,并用反欧几里得几何学的名字称呼它。”按照萨尔托里乌斯·冯·瓦尔特斯豪森(sartoriusvon Waltershausen)的看法,高斯的观点就是这样的。
由这一点开始, O。斯托尔茨在他的十分有教益的小册子中力图从纯粹可观察的经验事实中演绎欧几里得几何学的主要命题。在这里,设给出(图29)一个具有用之和2R的大三角形ABC。我们在BC上画垂线AD,通过BAE≈ABD和CAF≈ACD完成图形,并把全等图形CBHA”G添加到图形BCFAE之中。于是,我们得到单个矩形,因为在E,F,G,H处的角是直角,在A,C,A’,B处的角是平角(等于2R),因此边界线是直线且对顶角相等。通过与在矩形的边之一的中点垂直的垂线,能够把该矩形分为两个全等的矩形,继续这一程序,可以把平分线引到我们在被分割的边上乐意的任何点。相同的作法对于其他两边而言也为真。
因此,从给定的矩形 ABCD(图30)切出相互之间具有形成任何比例的边的较小的矩形AMQP,是有可能的。这个最后的矩形的对角线把它分成两个全等的直角三角形,其中每一个不管边的比例,具有角之和2R。每一个非直角三角形能够通过画垂线被分解为直角三角形,其中每一个能够再次被分解为具有更小边的直角三角形,以致每一个三角形的角之和终归是2R,倘使这对一个三角形严格为真的话。借助这些基于观察的命题,我们容易得出结论,矩形的(或任何所谓的平行四边形)的对边不管延长得多么远,处处离开的距离相同,也就是,永远也不相交。它们具有欧几里得平行的性质,可以像这样称呼和定义。现在,从三角形和矩形的性质同样可得,如此被第三条直线相交的两直线,致使它们同一侧的内角之和小于两直角,它们在该侧相交,但是在二者之中的任一方向,它们从它们的交点起将运动得相互无限地远离。因此,直线是无穷的。是作为公理或初始原理陈述的无根据的断言的东西,作为推理的结果可以具有健全的意义。
第二十节
因此,几何学是由把数学应用于关于空间的经验构成的。像数学物理学一样,它只有在它描述经验对象的条件下,借助图式化和理想化的概念,才能变成精密的演绎的科学。恰如力学能够断定质量的恒定性,或把物体之间的相互作用仅仅在观察误差限度内还原为简单的加速度一样,同样地也仅仅能够在相似限制内坚持直线、面的存在,角之和的量等等。但是,正像物理学有时发现它自己被强使用其它比较普遍的假定代替它的理想的假定,用依赖距离的加速度取代落体的恒定加速度,用热的可变量而不是热的恒定量一样,当事实要求相似的程序或该程序对科学的阐明暂时是必要的时候,也同样容许它在几何学中存在。现在勒让德(Legendre)、罗巴切夫斯基和两个鲍耶的努力将显示在他们的新见解中