八喜电子书 > 文学名著电子书 > 科学革命的结构 >

第3部分

科学革命的结构-第3部分

小说: 科学革命的结构 字数: 每页4000字

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



有这么重要。上面的讨论表明,常现科学和科学革命这两个互补的概念将怎样在以后紧接的第区节中展开。本文其他部分安排另外三个重要问题。第XI节通过讨论教科书,看着科学革命为什么以前是那么难以发现。第XII节描述了常现科学者传统的拥护者同新传统的追随者之间在革命过程中的竞争。因此,这一节我们也考察了这样一个过程,通过这个过程一定程度上可以在科学探索的理论中代替那种科学中通常所熟悉的证实或证伪程序,科学界不同部分之间的竞争,其实不过是不断否定一种以前公认的理论或接受另一种理论的历史过程。最后,第XIII节将提出这样一个问题:通过革命而发展怎么能同看起来是科学特有的进步性质一致起来呢?对这个问题,本文只想提供一种答案的轮廓,这个答案还取决于尚待进一步探讨的科学共同体特点。     
  某些读者肯定已在怀疑,历史的研究究竟能不能得出本书所要讲的那种根本观念上的转变呢?用逻辑两分法的全套武器可以表明:不可能完全做到这一点。历史是一门纯粹描述的科学,这一点我们说得实在太多了。但上面提出的论点却把历史说成是解释的、有时还是规范的科学。而且,我的许多概括还牵涉到关于科学家的社会学或社会心理学,而我的某些结论至少在传统上是属于逻辑学或认识论的。在前面的一段文字中,我可能会侵犯到现代影响很大的“发现的前后关系”同“论证的前后关系”之间的界限。混淆了不同的科学领域和科学上不同的重点,除了造成极大的混乱以外,还能有什么呢?     
  思想上离开了这一类的界限,我们简直无法更了解它们的含意和力量了。许多年来我一直认为,这关系到认识的本质问题。现在我还是认为,经过适当的修正,这些界限仍然可以为我们说明一些重要的问题。但是当我试图把这些界限应用到我们获得、接受和消化知识的实际情况时,即使是广义的应用,也是非常成问题的。这并不是一些基本逻辑或方法论方面的界限,从而比分析科学知识更为重要,现在看来,这正是一套传统可靠答案的一个组成部分,这些答案正是针对提出这种界限的那些问题的。这个逻辑循环绝不会使它们无效。但又确实使它们成为一种理论的组成部分,这样,它们也象其他理论一样需要仔细加以分析。如果它们的内容不仅是一些纯粹的抽象,那就必须看看把它们用到所要阐明的材料时其内容究竟怎样。难道科学史就不能为我们提供这样一些现象,可以合理地要求把认识论用上去吗?          
《科学革命的结构》 
T.S.库恩著        
II  走向常规科学    
   在本文中,“常规科学”是指严格根据一种或多种已有科学成就所进行的科学研究,某一科学共同体承认这些成就就是一定时期内进一步开展活动的基础。今天的一些初级和高级教科书正在重新估价这些成就,尽管并不怎么符合它们本来的面貌了。这些书解释了公认的理论,说明了这些理论许多或全部鲍有效应用,并同示范性的观察和实验作了对比。在十九世纪初期这些书还没有流行起来以前(在刚刚成熟的科学中甚至直到最近),许多科学经典名著也起过同样的作用。亚里士多德的《物理学》、托勒密的《至大论》、牛顿的《原理》和《光学》、富兰克林的《电学》、拉瓦锡的《化学》以及莱伊尔的《地质学》——这样一些著作,都在一定时期里为以后几代的工作者暗暗规定了在某一领域中应当研究些什么问题,采用些什么方法。所以能够这样,因为这些著作具备两个根本的特点。这些著作的成就足以空前地把一批坚定的拥护者吸引过来,使他们不再去进行科学活动中各种形式的竞争。同时,这种成就又足以毫无限制地为一批重新组合起来的科学工作者留下各种有待解决的问题。    
  凡是具备这两个特点的科学成就,此后我就称之为“规范”。这是一个同“常规科学”密切有关的术语。我采用这个术语是想说明,在科学实际活动中某些被公认的范例——包括定律、理论、应用以及仪器设备统统在内的范例——为某一种科学研究传统的出现提供了模型。这就是一些历史学家在“托勒密(或哥白尼)天文学”、“亚里士多德(或牛顿)力学”、“微粒(或波动)光学”等标题下所描述的那种传统。学习这种规范,包括许多比前面所举的还要专门得多的规范,主要是使一个新手准备好参加那个此后他即工作于其中的科学共同体。他在那里所遇到的人,也是从同一模型中学到专业基础的,因此在他们以后的活动中,就不大会再在基本原则方面碰到重大分歧。根据共同规范进行研究的人们,也受同样的科学实践规则和标准所制约。这种制约以及由此所造成的表面上的一致,正是常规科学的前提,也是某一种研究传统形成和延续的起源。    
  本文经常用规范概念代替各种熟悉的观念,因此,为什么要引进这个概念,还要作一些说明。具体科学成就作为专业性的规定,为什么要比由此抽象出来的概念、定律、理论和观点更为重要呢?共有规范对于科学中的新手来说,在什么意义上是一个逻辑上不能再分成具有同样功能的更小部分的基本单位呢?当我们在第 V节中碰到这些类似问题时,怎样回答这些问题,对于了解常规科学以及有关的规范概念,是具有根本意义的。但是,这种更加抽象的讨论,还要取决于同作用中的常规科学范例或规范范例以前联系得怎样。特别是,如果注意到没有规范,至少是没有上面所举那种毫不含糊而又有约束力的规范,也可以进行某种研究,那么,常规科学和规范这两个相互有关的概念就清楚了。有了一种规范,有了规范所容许的那种更深奥的研究,这是任何一个科学部门达到成熟的标志。    
  如果历史学家追溯一组挑选出来的现象,他很可能碰上物理光学历史所表现出来的那种发展模式,尽管可能略有变形。今天的物理教科书告诉学生,光是光子,也就是某种波动性和某种粒子性的量子力学实体。由此再研究下去,或者说,根据更精确的数学特征(由此得出语言特征)而研究下去。但是,对光的这种特征的描述,还只有半个世纪。本世纪初普朗克、爱因斯坦和其他人在进行这种描述以前,物理教科书还在教导说光是横波运动,这种认识扎根于一种规范之中,一种从十九世纪初杨( Young)和弗雷斯内尔(Fresnel)的光学著作中最后得出来的规范。波动理论起初也并不是大部分光学工作者所接受的。十八世纪中牛顿的《光学》为这个领域提供了规范,它教导说,光是物质粒子。那时的物理学家们都在寻求光粒子对固体的压力的证据,而早期的波动理论家们却不这样做。①    
  物理光学中规范的这种转化,就是科学革。一种规范经过革命向另一规范逐步过渡,正是成熟科学的通常发展模式。但这种模式没有牛顿以前那个时代的特征,我们在这里所关心的也正是二者的差别。从远古开始直到十七世纪末为止,在这段历史时期中没有出现过一种大家都能接受的关于光的本质的看法。相反,总是有许多互相竞争的学派和小流派,其中大多数都拥护伊壁鸠鲁、亚里士多德或托勒密理论的某种变形。一些人把光看作是从物质客体发射出来的粒子;而另一些人认为,光是介入物体和眼睛之间的某种介质的变态;还有的用介质同眼睛发射物之间的相互作用来解释光;此外还有其他各种不同的组合和变形。每一个相应的学派都从它同某一种形而上学的关系中吸取力量,每一个都强调它的理论最能解释的那一组光学现象才是合乎规范的观测。为此,它也精心研究了另外一些观测,以免为进一步的研究留下了悬而未决的问题。②    
  ①约瑟夫·普列斯特利( Joseph     
  Priestley):《关于视觉、光和色的发现的历史和现状》(伦敦;1972年),第385~39O页。     
  ②瓦斯科·隆奇( Vaseo     
  Ronchi):《光学史》;让·塔顿(Jean Taton)译(巴黎,1956年),第i…iv章。    
  所有这些学派都在各个不同时代为物理光学的主要概念、现象和技巧作出了重大贡献,而牛顿则从中引出了第一个几乎为大家一致公认的规范。任何一个关于科学家的定义,如果排除了这些不同学派中富有创造性的成员,也就排除了这些学派的现代继承人。这些人的确是科学家。但如果回顾一下牛顿以前的物理光学。人们完全可以得出结论说,那时这方面的工作者虽然是科学家,而他们工作的最后成果却不怎么够得上科学。既然可以不要什么共同的信念,每一个物理光学家都感到必须从根本上重建这门科学。这么一来,他要支持些什么观测和实验,也就可以相对自由地加以选择,因为并不存在一套每一个光学家都必须加以采纳的标准方法,或必须加以解释的标准现象。这种情况下所产生的    
  一些著作,就总是对准其他学派的人,而不是对准自然界。这种模式,在今天许多富有创造性的领域中也不陌生,同重大发现和发明之间也没有矛盾。但这却不是牛顿以后物理光学所采取的发展模式,也不是其他自然科学今天所熟悉的模式。    
  十九世纪上半叶电学发展的历史可以提供一个更加具体、更为熟悉的例子,说明一门科学在获得第一个普遍接受的规范以前是怎样发展起来的。在那时候,几乎有多少重要的电学实验家,象豪克斯比( Hauksbee)、格雷(Gray)、德札古利埃(Desaguliers)、杜·费伊(Du     
  Fay)、诺列特(Nollett)、沃森(Watson)、富兰克林等人,对电的本质就有多少看法。在所有这许多电的概念中,存在着某些共同的东西——这许多概念,都是从当时指导一切科学研究的机械粒子哲学的某种变形中片面地引伸出来的。而且,这些都是真正科学理论的组成部分,它们部分地来源于实验和观察,部分地又决定着怎样选择和解释研究中新出现的问题。虽然所有这些实验都是电学实验,虽然绝大部分实验者都读过彼此的著作,但他们各自的理论却只不过象是同一家族中的不同成员。①    
  ①杜安·鲁勒( Duan     
  Roller)和杜安· H· D·鲁勒(Duane H·D·Roller):《电荷概念的发展:电学从希腊人到库伦》(《哈佛实验科学事例史》第8例,马萨诸塞州,坎布里奇,1954年);     
  I.B柯亨(Cohen):《富兰克林和牛顿:探索牛顿思辨的实验科学理论以及由此产生的富兰克林电学著作之例》(费拉德尔菲亚,1956年),第Xii~Xii章。对下一段中某些分析的细节,我感谢我的学生约翰·L·布隆尚未发表的文章。在此文发表前,对富兰克林的规范的某种更展开、更确切的说明,见T。S。库恩:《科学研究中教导作用》,载A.C.克隆比(Crombie)编:《1961年7月9~15日牛津大学科学史专题会议》。即将由海涅曼教育书店出版。     
  一批早期的理论家们根据十七世纪的实践,把吸引和摩擦起电看作是基本的电现象。这些人倾向于把排斥作为机械回跳所产生的二级效应,并又尽可能拖延对格雷新发现的电传导效应进行讨论和系统研究。另一些“电学家”(如他们所自称的)把吸引和排斥同样看成是电的基本表现,并据以修改他们的理论和研究工作。(实际上他们的人数很少——甚至连富兰克林的理论也从没有充分说明过两个带负电荷的物体为什么互相排斥。)但是他们在同时说明任何一种最简单的导电效应时,也碰上了同前一批人一样的困难。这种效应又为第三批人提供了一个出发点,他们倾向于把电说成是可以穿越导体的“流体”,而不是一种由非导体发射出来的“以太”。于是他们又面临着怎样把他们的理论同大量的吸引排斥效应协调起来的困难。只是通过富兰克林和他的直接后继者的工作才有了一种新的理论,可以同样简便地说明几乎所有这些效应,从而也可以给下一代“电学家”的研究工作提供一个共同的规范。    
  象数学、天文学这样一些部门,早在史前时期就有了第一个明确的规范,再象由专业的分化和重组而形成的生物化学,也已臻于成熟。除了这几个特殊部门以外,上文所勾画的情况在历史上还是很典型的。虽然我不得不继续采取这种不恰当的简单化作法,把连续的历史事件硬套上一个简直是信手拈来的名字(例如牛顿或者富兰克林),但我却认为,这样的根本不同正是表现了这样一些学科的特点,象亚里土多德以前对运动、阿基米德以前对静止的研究、布来克( BIack)以前对热的研究、波义耳和波尔哈夫以前的化学的研究、胡顿(Hutton)以前对历史地质学的研究等等。在生物学的各个分支中——例如对遗传的研究——有了第一个为人们所普遍接受的规范,还是最近的事;而在社会科学中,究竟哪些分支已具备这种规范,还完全悬而未决。历史表明,要使科学研究中意见完全一致,实在是艰巨得很。    
  但历史也表明了在这条道路上为什么会碰到这样的困难。如果没有一种规范或某种候补规范,凡是可能合乎某一门科学发展的事实,看起来都会同样地合适。结果,最初搜集事实的活动更近乎一种随机活动,而后来科学的发展却使之习以为常了。而且,因为没有必要寻求什么样的更隐秘的信息,最初搜集事实一般也只限于某些信手拈来的材料来源。在由此聚成的蓄水池中,也包含着那些易于受到偶然的观察、实验以及某些更奥秘材料影响的事实,都可以从医药、制定历法和冶金这一类行业中重新找到。由于这些行业可以随时提供不能按照因果关系发现的事实,因而在新科学的涌现中,它们的工艺经常起着

返回目录 上一页 下一页 回到顶部 0 0

你可能喜欢的