makefile概述-第2部分
按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
utils。o : utils。c defs。h
cc …c utils。c
clean :
rm edit (objects)
于是如果有新的 。o 文件加入,我们只需简单地修改一下 objects 变量就可以了。
关于变量更多的话题,我会在后续给你一一道来。
1。5 让make自动推导
GNU的make很强大,它可以自动推导文件以及文件依赖关系后面的命令,于是我们就没必要去在每一个'。o'文件后都写上类似的命令,因为,我们的make会自动识别,并自己推导命令。
只要make看到一个'。o'文件,它就会自动的把'。c'文件加在依赖关系中,如果make找到一个whatever。o,那么 whatever。c,就会是whatever。o的依赖文件。并且 cc …c whatever。c 也会被推导出来,于是,我们的makefile再也不用写得这么复杂。我们的是新的makefile又出炉了。
objects = main。o kbd。o mand。o display。o
insert。o search。o files。o utils。o
edit : (objects)
cc …o edit (objects)
main。o : defs。h
kbd。o : defs。h mand。h
mand。o : defs。h mand。h
display。o : defs。h buffer。h
insert。o : defs。h buffer。h
search。o : defs。h buffer。h
files。o : defs。h buffer。h mand。h
utils。o : defs。h
。PHONY : clean
clean :
rm edit (objects)
这种方法,也就是make的“隐晦规则”。上面文件内容中,“。PHONY”表示,clean是个伪目标文件。
关于更为详细的“隐晦规则”和“伪目标文件”,我会在后续给你一一道来。
1。6 另类风格的makefile
即然我们的make可以自动推导命令,那么我看到那堆'。o'和'。h'的依赖就有点不爽,那么多的重复的'。h',能不能把其收拢起来,好吧,没有问题,这个对于make来说很容易,谁叫它提供了自动推导命令和文件的功能呢?来看看最新风格的makefile吧。
objects = main。o kbd。o mand。o display。o
insert。o search。o files。o utils。o
edit : (objects)
cc …o edit (objects)
(objects) : defs。h
kbd。o mand。o files。o : mand。h
display。o insert。o search。o files。o : buffer。h
。PHONY : clean
clean :
rm edit (objects)
这种风格,让我们的makefile变得很简单,但我们的文件依赖关系就显得有点凌乱了。鱼和熊掌不可兼得。还看你的喜好了。我是不喜欢这种风格的,一是文件的依赖关系看不清楚,二是如果文件一多,要加入几个新的。o文件,那就理不清楚了。
1。7 清空目标文件的规则
每个Makefile中都应该写一个清空目标文件(。o和执行文件)的规则,这不仅便于重编译,也很利于保持文件的清洁。这是一个“修养”(呵呵,还记得我的《编程修养》吗)。一般的风格都是:
clean:
rm edit (objects)
更为稳健的做法是:
。PHONY : clean
clean :
…rm edit (objects)
前面说过,。PHONY意思表示clean是一个“伪目标”,。而在rm命令前面加了一个小减号的意思就是,也许某些文件出现问题,但不要管,继续做后面的事。当然,clean的规则不要放在文件的开头,不然,这就会变成make的默认目标,相信谁也不愿意这样。不成文的规矩是—— “clean从来都是放在文件的最后”。
上面就是一个makefile的概貌,也是makefile的基础,下面还有很多makefile的相关细节,准备好了吗?准备好了就来。
2 Makefile 总述
2。1 Makefile里有什么?
Makefile里主要包含了五个东西:显式规则、隐晦规则、变量定义、文件指示和注释。
1。 显式规则。显式规则说明了,如何生成一个或多的的目标文件。这是由Makefile的书写者明显指出,要生成的文件,文件的依赖文件,生成的命令。
2。 隐晦规则。由于我们的make有自动推导的功能,所以隐晦的规则可以让我们比较粗糙地简略地书写Makefile,这是由make所支持的。
3。 变量的定义。在Makefile中我们要定义一系列的变量,变量一般都是字符串,这个有点你C语言中的宏,当Makefile被执行时,其中的变量都会被扩展到相应的引用位置上。
4。 文件指示。其包括了三个部分,一个是在一个Makefile中引用另一个Makefile,就像C语言中的include一样;另一个是指根据某些情况指定Makefile中的有效部分,就像C语言中的预编译#if一样;还有就是定义一个多行的命令。有关这一部分的内容,我会在后续的部分中讲述。
5。 注释。Makefile中只有行注释,和UNIX的Shell脚本一样,其注释是用“#”字符,这个就像C/C++中的“//”一样。如果你要在你的Makefile中使用“#”字符,可以用反斜框进行转义,如:“#”。
最后,还值得一提的是,在Makefile中的命令,必须要以'Tab'键开始。
2。2Makefile的文件名
默认的情况下,make命令会在当前目录下按顺序找寻文件名为“GNUmakefile”、“makefile”、“Makefile”的文件,找到了解释这个文件。在这三个文件名中,最好使用“Makefile”这个文件名,因为,这个文件名第一个字符为大写,这样有一种显目的感觉。最好不要用“GNUmakefile”,这个文件是GNU的make识别的。有另外一些make只对全小写的“makefile”文件名敏感,但是基本上来说,大多数的make都支持 “makefile”和“Makefile”这两种默认文件名。
当然,你可以使用别的文件名来书写Makefile,比如:“Make。Linux”,“Make。Solaris”,“Make。AIX”等,如果要指定特定的Makefile,你可以使用make的“…f”和“file”参数,如:make …f Make。Linux或make file Make。AIX。
2。3 引用其它的Makefile
在Makefile使用include关键字可以把别的Makefile包含进来,这很像C语言的#include,被包含的文件会原模原样的放在当前文件的包含位置。include的语法是:
include
filename可以是当前操作系统Shell的文件模式(可以保含路径和通配符)
在include前面可以有一些空字符,但是绝不能是'Tab'键开始。include和可以用一个或多个空格隔开。举个例子,你有这样几个Makefile:a。mk、b。mk、c。mk,还有一个文件叫foo。make,以及一个变量(bar),其包含了e。mk和f。mk,那么,下面的语句:
include foo。make *。mk (bar)
等价于:
include foo。make a。mk b。mk c。mk e。mk f。mk
make命令开始时,会把找寻include所指出的其它Makefile,并把其内容安置在当前的位置。就好像C/C++的 #include指令一样。如果文件都没有指定绝对路径或是相对路径的话,make会在当前目录下首先寻找,如果当前目录下没有找到,那么,make还会在下面的几个目录下找:
1。 如果make执行时,有“…I”或“include…dir”参数,那么make就会在这个参数所指定的目录下去寻找。
2。 如果目录/include(一般是:/usr/local/bin或/usr/include)存在的话,make也会去找。
如果有文件没有找到的话,make会生成一条警告信息,但不会马上出现致命错误。它会继续载入其它的文件,一旦完成makefile的读取, make会再重试这些没有找到,或是不能读取的文件,如果还是不行,make才会出现一条致命信息。如果你想让make不理那些无法读取的文件,而继续执行,你可以在include前加一个减号“…”。如:
…include
其表示,无论include过程中出现什么错误,都不要报错继续执行。和其它版本make兼容的相关命令是sinclude,其作用和这一个是一样的。
2。4 环境变量 MAKEFILES
如果你的当前环境中定义了环境变量MAKEFILES,那么,make会把这个变量中的值做一个类似于include的动作。这个变量中的值是其它的Makefile,用空格分隔。只是,它和include不同的是,从这个环境变中引入的Makefile的“目标”不会起作用,如果环境变量中定义的文件发现错误,make也会不理。
但是在这里我还是建议不要使用这个环境变量,因为只要这个变量一被定义,那么当你使用make时,所有的Makefile都会受到它的影响,这绝不是你想看到的。在这里提这个事,只是为了告诉大家,也许有时候你的Makefile出现了怪事,那么你可以看看当前环境中有没有定义这个变量。
2。5 make的工作方式
GNU的make工作时的执行步骤入下:(想来其它的make也是类似)
1。 读入所有的Makefile。
2。 读入被include的其它Makefile。
3。 初始化文件中的变量。
4。 推导隐晦规则,并分析所有规则。
5。 为所有的目标文件创建依赖关系链。
6。 根据依赖关系,决定哪些目标要重新生成。
7。 执行生成命令。
1…5步为第一个阶段,6…7为第二个阶段。第一个阶段中,如果定义的变量被使用了,那么,make会把其展开在使用的位置。但make并不会完全马上展开,make使用的是拖延战术,如果变量出现在依赖关系的规则中,那么仅当这条依赖被决定要使用了,变量才会在其内部展开。
当然,这个工作方式你不一定要清楚,但是知道这个方式你也会对make更为熟悉。有了这个基础,后续部分也就容易看懂了。
3 Makefile书写规则
规则包含两个部分,一个是依赖关系,一个是生成目标的方法。
在Makefile中,规则的顺序是很重要的,因为,Makefile中只应该有一个最终目标,其它的目标都是被这个目标所连带出来的,所以一定要让make知道你的最终目标是什么。一般来说,定义在Makefile中的目标可能会有很多,但是第一条规则中的目标将被确立为最终的目标。如果第一条规则中的目标有很多个,那么,第一个目标会成为最终的目标。make所完成的也就是这个目标。
好了,还是让我们来看一看如何书写规则。
3。1 规则举例
foo。o : foo。c defs。h # foo模块
cc …c …g foo。c
看到这个例子,各位应该不是很陌生了,前面也已说过,foo。o是我们的目标,foo。c和defs。h是目标所依赖的源文件,而只有一个命令“cc …c …g foo。c”(以Tab键开头)。这个规则告诉我们两件事:
1。 文件的依赖关系,foo。o依赖于foo。c和defs。h的文件,如果foo。c和defs。h的文件日期要比foo。o文件日期要新,或是foo。o不存在,那么依赖关系发生。
2。 如果生成(或更新)foo。o文件。也就是那个cc命令,其说明了,如何生成foo。o这个文件。(当然foo。c文件include了defs。h文件)
3。2 规则的语法
targets : prerequisites
mand
。。。
或是这样:
targets : prerequisites ; mand
mand
。。。
targets是文件名,以空格分开,可以使用通配符。一般来说,我们的目标基本上是一个文件,但也有可能是多个文件。
mand是命令行,如果其不与“target:prerequisites”在一行,那么,必须以'Tab键'开头,如果和prerequisites在一行,那么可以用分号做为分隔。(见上)
prerequisites也就是目标所依赖的文件(或依赖目标)。如果其中的某个文件要比目标文件要新,那么,目标就被认为是“过时的”,被认为是需要重生成的。这个在前面已经讲过了。
如果命令太长,你可以使用反斜框(‘’)作为换行符。make对一行上有多少个字符没有限制。规则告诉make两件事,文件的依赖关系和如何成成目标文件。
一般来说,make会以UNIX的标准Shell,也就是/bin/sh来执行命令。
3。3 在规则中使用通配符
如果我们想定义一系列比较类似的文件,我们很自然地就想起使用通配符。make支持三各通配符:“*”,“?”和“'。。。'”。这是和Unix的B…Shell是相同的。
波浪号(“~”)字符在文件名中也有比较特殊的用途。如果是“~/test”,这就表示当前用户的HOME目录下的test目录。而 “~hchen/test”则表示用户hchen的宿主目录下的test目录。(这些都是Unix下的小知识了,make也支持)而在Windows或是 MS…DOS下,用户没有宿主目录,那么波浪号所指的目录则根据环境变量“HOME”而定。
通配符代替了你一系列的文件,如“*。c”表示所以后缀为c的文件。一个需要我们注意的是,如果我们的文件名中有通配符,如:“*”,那么可以用转义字符“”,如“*”来表示真实的“*”字符,而不是任意长度的字符串。
好吧,还是先来看几个例子吧:
clean:
rm …f *。o
上面这个例子我不不多说了,这是操作系统Shell所支持的通配符。这是在命令中的通配符。
print: *。c
lpr …p ?
touch print
上面这个例子说明了通配符也可以在我们的规则中,目标print依赖于所有的'。c'文件。其中的“?”是一个自动化变量,我会在后面给你讲述。
objects = *。o
上面这个例子,表示了,通符同样可以用在变量中。并不是说'*。o'会展开,不!objects的值就是“*。o”。Makefile中的变量其实就是 C/C++中的宏。如果你要让通配符在变量中展开,也就是让objects的值是所有'。o'的文件名的集合,那么,你可以这样:
objects := (wildcard *。o)
这种用法由关键字“wildc