30+mba-µÚ59²¿·Ö
°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·ҳ£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡
of¡¡uncertainty¡£¡¡Until¡¡Pascal¡¯s¡¡time£»¡¡the¡¡outes¡¡of¡¡events¡¡were¡¡considered¡¡
to¡¡be¡¡largely¡¡in¡¡the¡¡hands¡¡of¡¡the¡¡gods£»¡¡but¡¡he¡¡instigated¡¡a¡¡method¡¡for¡¡using¡¡
mathematical¡¡analysis¡¡to¡¡evaluate¡¡the¡¡cost¡¡and¡¡residual¡¡value¡¡of¡¡various¡¡
alternatives¡¡so¡¡as¡¡to¡¡be¡¡able¡¡to¡¡choose¡¡the¡¡best¡¡decision¡¡when¡¡all¡¡the¡¡relevant¡¡
information¡¡is¡¡not¡¡available¡£¡¡
Decision¡¡trees¡¡
Decision¡¡trees¡¡are¡¡a¡¡visual¡¡as¡¡well¡¡as¡¡valuable¡¡way¡¡to¡¡organize¡¡data¡¡so¡¡as¡¡
to¡¡help¡¡make¡¡a¡¡choice¡¡between¡¡several¡¡options¡¡with¡¡different¡¡chances¡¡of¡¡
occurring¡¡and¡¡different¡¡results¡¡if¡¡they¡¡do¡¡occur¡£¡¡Trees¡¡£¨see¡¡Figure¡¡11¡£1£©¡¡were¡¡
first¡¡used¡¡in¡¡business¡¡in¡¡the¡¡1960s¡¡but¡¡became¡¡seriously¡¡popular¡¡from¡¡1970¡¡
onwards¡¡when¡¡algorithms¡¡were¡¡devised¡¡to¡¡generate¡¡decision¡¡trees¡¡and¡¡
automatically¡¡reduce¡¡them¡¡to¡¡a¡¡manageable¡¡size¡£¡¡
Making¡¡a¡¡decision¡¡tree¡¡requires¡¡these¡¡steps¡¡to¡¡be¡¡carried¡¡out¡¡initially£»¡¡
from¡¡which¡¡the¡¡diagram¡¡can¡¡be¡¡drawn£º¡¡
¡£¡¡Establish¡¡all¡¡the¡¡alternatives¡£¡¡
¡£¡¡Estimate¡¡the¡¡financial¡¡consequences¡¡of¡¡each¡¡alternative¡£¡¡
¡£¡¡Assign¡¡the¡¡risk¡¡in¡¡terms¡¡of¡¡uncertainty¡¡allied¡¡with¡¡each¡¡alternative¡£¡¡
Figure¡¡11¡£1¡¡shows¡¡an¡¡example¡¡decision¡¡tree¡£¡¡The¡¡convention¡¡is¡¡that¡¡squares¡¡
represent¡¡decisions¡¡and¡¡circles¡¡represent¡¡uncertain¡¡outes¡£¡¡In¡¡this¡¡example£»¡¡
the¡¡problem¡¡being¡¡decided¡¡on¡¡is¡¡whether¡¡to¡¡launch¡¡a¡¡new¡¡product¡¡
or¡¡revamp¡¡an¡¡existing¡¡one¡£¡¡The¡¡uncertain¡¡outes¡¡are¡¡whether¡¡the¡¡result¡¡
of¡¡the¡¡decision¡¡will¡¡be¡¡successful¡¡£¨¡ê10¡¡million¡¡profit£©£»¡¡just¡¡ok¡¡£¨¡ê5¡¡million¡¡
profit£©¡¡or¡¡poor¡¡£¨¡ê1¡¡million£©¡£¡¡In¡¡the¡¡case¡¡of¡¡launching¡¡a¡¡new¡¡product¡¡there¡¡is£»¡¡
in¡¡the¡¡management¡¯s¡¡best¡¡estimate£»¡¡a¡¡10¡¡per¡¡cent¡¡£¨0¡£1¡¡in¡¡decimals£©¡¡chance¡¡
of¡¡success£»¡¡a¡¡40¡¡per¡¡cent¡¡chance¡¡it¡¡will¡¡be¡¡ok¡¡and¡¡a¡¡50¡¡per¡¡cent¡¡chance¡¡it¡¡
will¡¡result¡¡in¡¡poor¡¡sales¡£¡¡Multiplying¡¡the¡¡expected¡¡profit¡¡arising¡¡from¡¡each¡¡
possible¡¡oute¡¡by¡¡the¡¡probability¡¡of¡¡its¡¡occurring¡¡gives¡¡what¡¡is¡¡termed¡¡
an¡¡¡®expected¡¡value¡¯¡£¡¡Adding¡¡up¡¡the¡¡expected¡¡values¡¡of¡¡all¡¡the¡¡possible¡¡
outes¡¡for¡¡each¡¡decision¡¡suggests£»¡¡in¡¡this¡¡case£»¡¡that¡¡revamping¡¡an¡¡old¡¡
product¡¡will¡¡produce¡¡the¡¡most¡¡profit¡£¡¡
The¡¡example¡¡is¡¡a¡¡very¡¡simple¡¡one¡¡and¡¡in¡¡practice¡¡decisions¡¡are¡¡much¡¡
more¡¡plex¡£¡¡We¡¡may¡¡have¡¡intermediate¡¡decisions¡¡to¡¡make£»¡¡such¡¡as¡¡
should¡¡we¡¡invest¡¡heavily¡¡and¡¡bring¡¡the¡¡new¡¡product¡¡to¡¡market¡¡quickly£»¡¡or¡¡
should¡¡we¡¡spend¡¡money¡¡on¡¡test¡¡marketing¡£¡¡This¡¡will¡¡introduce¡¡more¡¡decisions¡¡
and¡¡more¡¡uncertain¡¡outes¡¡represented¡¡by¡¡a¡¡growing¡¡number¡¡of¡¡
¡®nodes¡¯£»¡¡the¡¡points¡¡at¡¡which¡¡new¡¡branches¡¡in¡¡the¡¡tree¡¡are¡¡formed¡£
Quantitative¡¡and¡¡Qualitative¡¡Research¡¡and¡¡Analysis¡¡249¡¡
If¡¡the¡¡outes¡¡of¡¡the¡¡decision¡¡under¡¡consideration¡¡are¡¡spread¡¡over¡¡several¡¡
years£»¡¡you¡¡should¡¡bine¡¡this¡¡analysis¡¡with¡¡the¡¡net¡¡present¡¡value¡¡of¡¡the¡¡
monetary¡¡values¡¡concerned¡£¡¡£¨See¡¡Discounted¡¡Cash¡¡Flow¡¡in¡¡Chapter¡¡2£»¡¡
Finance¡££©¡¡
Statistics¡¡
Statistics¡¡is¡¡the¡¡set¡¡of¡¡tools¡¡that¡¡we¡¡use¡¡to¡¡help¡¡us¡¡assess¡¡the¡¡truth¡¡or¡¡otherwise¡¡
of¡¡something¡¡we¡¡observe¡£¡¡For¡¡example£»¡¡if¡¡the¡¡last¡¡10¡¡phone¡¡calls¡¡a¡¡pany¡¡
received¡¡were¡¡all¡¡cancelling¡¡orders£»¡¡does¡¡that¡¡signal¡¡that¡¡a¡¡business¡¡has¡¡a¡¡
problem£»¡¡or¡¡is¡¡that¡¡event¡¡within¡¡the¡¡bounds¡¡of¡¡possibility£¿¡¡If¡¡it¡¡is¡¡within¡¡the¡¡
bounds¡¡of¡¡possibility£»¡¡what¡¡are¡¡the¡¡odds¡¡that¡¡we¡¡could¡¡still¡¡be¡¡wrong¡¡and¡¡
really¡¡have¡¡a¡¡problem£¿¡¡A¡¡further¡¡issue¡¡is¡¡that¡¡usually¡¡we¡¡can¡¯t¡¡easily¡¡examine¡¡
the¡¡entire¡¡population£»¡¡so¡¡we¡¡have¡¡to¡¡make¡¡inferences¡¡from¡¡samples¡¡and£»¡¡
unless¡¡those¡¡samples¡¡are¡¡representative¡¡of¡¡the¡¡population¡¡we¡¡are¡¡interested¡¡
in¡¡and¡¡of¡¡sufficient¡¡size£»¡¡we¡¡could¡¡still¡¡be¡¡very¡¡wrong¡¡in¡¡our¡¡interpretation¡¡
of¡¡the¡¡evidence¡£¡¡At¡¡the¡¡time¡¡of¡¡writing£»¡¡there¡¡was¡¡much¡¡debate¡¡as¡¡to¡¡how¡¡
much¡¡of¡¡a¡¡surveillance¡¡society¡¡Britain¡¡had¡¡bee¡£¡¡The¡¡figure¡¡of¡¡4¡£2¡¡million¡¡
cameras£»¡¡one¡¡for¡¡every¡¡14¡¡people£»¡¡was¡¡the¡¡accepted¡¡statistic¡£¡¡However£»¡¡a¡¡
diligent¡¡journalist¡¡tracked¡¡down¡¡the¡¡evidence¡¡to¡¡find¡¡that¡¡extrapolating¡¡a¡¡
survey¡¡of¡¡a¡¡single¡¡street¡¡in¡¡a¡¡single¡¡town¡¡arrived¡¡at¡¡that¡¡figure£¡¡¡
Central¡¡tendency¡¡
The¡¡most¡¡mon¡¡way¡¡statistics¡¡are¡¡considered¡¡is¡¡around¡¡a¡¡single¡¡figure¡¡
that¡¡purports¡¡in¡¡some¡¡way¡¡to¡¡be¡¡representative¡¡of¡¡a¡¡population¡¡at¡¡large¡£¡¡
Figure¡¡11¡£1¡¡Example¡¡decision¡¡tree¡¡
Activity¡¡
fork¡¡
Event¡¡
fork¡¡
Event¡¡
fork¡¡
Launch¡¡
new¡¡product¡¡
Revamp¡¡
old¡¡product¡¡
Successful¡¡
Successful¡¡
OK
OK¡¡
Poor¡¡
Poor¡¡
10£¥¡¡£¨0¡£1£©¡¡
40£¥¡¡£¨0¡£4£©¡¡
50£¥¡¡£¨0¡£5£©¡¡
30£¥¡¡£¨0¡£3£©¡¡
60£¥¡¡£¨0¡£6£©¡¡
10£¥¡¡£¨0¡£10£©¡¡
Expected¡¡
profit¡¡¡ês¡¡
Expected¡¡
value¡¡¡ês¡¡
10m¡¡
1m¡¡
5m¡¡
6m¡¡
4m¡¡
2m¡¡0¡£2m¡¡
2¡£4m¡¡
1¡£8m¡¡
0¡£5m¡¡
2m¡¡
¡Á¡¡1m¡¡
¡Á
¡Á
¡Á
¡Á
¡Á¡¡
=
=
=
=
=
=¡¡
3¡£5m¡¡
4¡£4m
250¡¡The¡¡Thirty¡Day¡¡MBA¡¡
There¡¡are¡¡three¡¡principal¡¡ways¡¡of¡¡measuring¡¡tendency¡¡and¡¡these¡¡are¡¡the¡¡
most¡¡o¡£¡£en¡¡confused¡¡and¡¡frequently¡¡misrepresented¡¡set¡¡of¡¡numbers¡¡in¡¡the¡¡
whole¡¡field¡¡of¡¡statistics¡£¡¡
To¡¡analyse¡¡anything¡¡in¡¡statistics¡¡you¡¡first¡¡need¡¡a¡¡¡®data¡¡set¡¯¡¡such¡¡as¡¡that¡¡in¡¡
Table¡¡11¡£1¡£
Table¡¡11¡£1¡¡The¡¡selling¡¡prices¡¡of¡¡panies¡¯¡¡products¡¡
Product¡¡Selling¡¡price¡¡¡ês¡¡
1¡¡30¡¡
2¡¡40¡¡
3¡¡10¡¡
4¡¡15¡¡
5¡¡10¡¡
The¡¡mean¡¡£¨or¡¡average£©¡¡
This¡¡is¡¡the¡¡most¡¡mon¡¡tendency¡¡measure¡¡and¡¡is¡¡used¡¡as¡¡a¡¡rough¡¡and¡¡
ready¡¡check¡¡for¡¡many¡¡types¡¡of¡¡data¡£¡¡In¡¡the¡¡example¡¡above£»¡¡adding¡¡up¡¡the¡¡
prices¡¡¨C¡¡¡ê105¡¡and¡¡dividing¡¡by¡¡the¡¡number¡¡of¡¡products¡¡¨C¡¡5£»¡¡you¡¡arrive¡¡at¡¡a¡¡
mean£»¡¡or¡¡average£»¡¡selling¡¡price¡¡of¡¡¡ê21¡£¡¡
The¡¡median¡¡
The¡¡median¡¡is¡¡the¡¡value¡¡occurring¡¡at¡¡the¡¡centre¡¡of¡¡a¡¡data¡¡set¡£¡¡Recasting¡¡the¡¡
figures¡¡in¡¡Table¡¡11¡£1¡¡puts¡¡product¡¡4¡¯s¡¡selling¡¡price¡¡of¡¡¡ê15¡¡in¡¡that¡¡position£»¡¡
with¡¡two¡¡higher¡¡and¡¡two¡¡lower¡¡prices¡£¡¡The¡¡median¡¡es¡¡into¡¡its¡¡own¡¡in¡¡
situations¡¡where¡¡the¡¡outlying¡¡values¡¡in¡¡a¡¡data¡¡set¡¡are¡¡extreme£»¡¡as¡¡they¡¡are¡¡
in¡¡our¡¡example£»¡¡where¡¡in¡¡fact¡¡most¡¡of¡¡the¡¡products¡¡sell¡¡for¡¡well¡¡below¡¡¡ê21¡£¡¡
In¡¡this¡¡case¡¡the¡¡median¡¡would¡¡be¡¡a¡¡be¡£¡£er¡¡measure¡¡of¡¡the¡¡central¡¡tendency¡£¡¡
You¡¡should¡¡always¡¡use¡¡the¡¡median¡¡when¡¡the¡¡distribution¡¡is¡¡skewed¡£¡¡You¡¡
can¡¡use¡¡either¡¡the¡¡mean¡¡or¡¡the¡¡median¡¡when¡¡the¡¡population¡¡is¡¡symmetrical¡¡
as¡¡they¡¡will¡¡give¡¡very¡¡similar¡¡results¡£¡¡
The¡¡mode¡¡
The¡¡mode¡¡is¡¡the¡¡observation¡¡in¡¡a¡¡data¡¡set¡¡appearing¡¡the¡¡most¡¡o¡£¡£en£»¡¡in¡¡this¡¡
example¡¡it¡¡is¡¡¡ê10¡£¡¡So¡¡if¡¡we¡¡were¡¡surveying¡¡a¡¡sample¡¡of¡¡the¡¡customers¡¡of¡¡the¡¡
pany¡¡in¡¡this¡¡example£»¡¡we¡¡would¡¡expect¡¡more¡¡of¡¡them¡¡to¡¡say¡¡they¡¡were¡¡
paying¡¡¡ê10¡¡for¡¡their¡¡products£»¡¡though£»¡¡as¡¡we¡¡know£»¡¡the¡¡average¡¡price¡¡is¡¡
¡ê21¡£
Quantitative¡¡and¡¡Qualitative¡¡Research¡¡and¡¡Analysis¡¡251¡¡
Variability¡¡
As¡¡well¡¡as¡¡measuring¡¡how¡¡values¡¡cluster¡¡around¡¡a¡¡central¡¡value£»¡¡to¡¡make¡¡
full¡¡use¡¡of¡¡the¡¡data¡¡set¡¡we¡¡need¡¡to¡¡establish¡¡how¡¡much¡¡those¡¡values¡¡could¡¡
vary¡£¡¡The¡¡two¡¡most¡¡mon¡¡methods¡¡employed¡¡are¡¡the¡¡following¡£¡¡
Range¡¡
The¡¡range¡¡is¡¡calculated¡¡as¡¡the¡¡maximum¡¡figure¡¡minus¡¡the¡¡minimum¡¡figure¡£¡¡
In¡¡the¡¡example¡¡being¡¡used¡¡here£»¡¡that¡¡is¡¡¡ê40¡¡¨C¡¡¡ê10¡¡=¡¡¡ê30¡£¡¡This¡¡figure¡¡gives¡¡
us¡¡an¡¡idea¡¡of¡¡how¡¡dispersed¡¡the¡¡data¡¡is¡¡and¡¡so¡¡how¡¡meaningful£»¡¡say£»¡¡the¡¡
average¡¡figure¡¡alone¡¡might¡¡be¡£¡¡
Standard¡¡deviation¡¡from¡¡the¡¡mean¡¡
This¡¡is¡¡a¡¡rather¡¡more¡¡plicated¡¡concept¡¡as¡¡you¡¡need¡¡first¡¡to¡¡grasp¡¡the¡¡
central¡¡limit¡¡theorem£»¡¡which¡¡states¡¡that¡¡the¡¡mean¡¡of¡¡a¡¡sample¡¡of¡¡a¡¡large¡¡
population¡¡will¡¡approach¡¡¡®normal¡¯¡¡as¡¡the¡¡sample¡¡gets¡¡bigger¡£¡¡The¡¡most¡¡
valuable¡¡feature¡¡here¡¡is¡¡that¡¡even¡¡quite¡¡small¡¡samples¡¡are¡¡normal¡£¡¡The¡¡
bell¡¡curve£»¡¡also¡¡called¡¡the¡¡Gaussian¡¡distribution£»¡¡named¡¡a¡£¡£er¡¡Johann¡¡Carl¡¡
Friedrich¡¡Gauss¡¡£¨1777¨C1855£©£»¡¡a¡¡German¡¡mathematician¡¡and¡¡scientist£»¡¡shows¡¡
how¡¡far¡¡values¡¡are¡¡distributed¡¡around¡¡a¡¡mean¡£¡¡The¡¡distribution£»¡¡referred¡¡to¡¡
as¡¡the¡¡standard¡¡deviation£»¡¡is¡¡what¡¡makes¡¡it¡¡possible¡¡to¡¡state¡¡how¡¡accurate¡¡
a¡¡sample¡¡is¡¡likely¡¡to¡¡be¡£¡¡When¡¡you¡¡hear¡¡that¡¡the¡¡results¡¡of¡¡opinion¡¡polls¡¡
predicting¡¡elections¡¡based¡¡on¡¡samples¡¡as¡¡small¡¡as¡¡1£»000¡¡are¡¡usually¡¡reliable¡¡
within¡¡four¡¡percentage¡¡points£»¡¡19¡¡times¡¡out¡¡of¡¡20£»¡¡you¡¡have¡¡a¡¡measure¡¡of¡¡
how¡¡important¡£¡¡£¨You¡¡can¡¡get¡¡free¡¡tutorials¡¡on¡¡this¡¡and¡¡other¡¡aspects¡¡of¡¡
statistics¡¡at¡¡Web¡¡Interface¡¡for¡¡Statistics¡¡Education¡¡£¨h¡£¡£p£º//wise¡£cgu¡£edu£©¡££©¡¡
Figure¡¡11¡£2¡¡is¡¡a¡¡normal¡¡distribution¡¡that¡¡shows¡¡that¡¡68¡£2¡¡per¡¡cent¡¡of¡¡
the¡¡observations¡¡of¡¡a¡¡normal¡¡population¡¡will¡¡be¡¡found¡¡within¡¡1¡¡standard¡¡
Figure¡¡11¡£2¡¡Normal¡¡distribution¡¡curve¡¡£¨bell£©¡¡showing¡¡standard¡¡deviation¡¡
Mean¡¡
¨C3¡¡SD¡¡¨C2¡¡SD¡¡¨C1¡¡SD¡¡0¡¡£«1¡¡SD¡¡£«2¡¡SD¡¡£«3¡¡SD¡¡
2¡£1£¥¡¡2¡£1£¥¡¡
13¡£6£¥¡¡13¡£6£¥¡¡
34¡£1£¥¡¡34¡£1£¥
252¡¡The¡¡Thirty¡Day¡¡MBA¡¡
deviation¡¡of¡¡the¡¡mean£»¡¡95¡£4¡¡per¡¡cent¡¡within¡¡2¡¡standard¡¡deviations£»¡¡and¡¡
99¡£6¡¡per¡¡cent¡¡within¡¡3¡¡standard¡¡deviations¡£¡¡So¡¡almost¡¡100¡¡per¡¡cent¡¡of¡¡the¡¡
observations¡¡will¡¡be¡¡observed¡¡in¡¡a¡¡span¡¡of¡¡six¡¡standard¡¡deviations£»¡¡three¡¡
below¡¡the¡¡mean¡¡and¡¡three¡¡above¡¡the¡¡mean¡£¡¡The¡¡standard¡¡deviation¡¡is¡¡an¡¡
amount¡¡calculated¡¡from¡¡the¡¡values¡¡in¡¡the¡¡sample¡£¡¡Use¡¡this¡¡calculator¡¡£¨¡¡
easycalculation/statistics/standard¡deviation¡£php£©¡¡to¡¡work¡¡out¡¡the¡¡
standard¡¡deviation¡¡by¡¡entering¡¡the¡¡numbers¡¡in¡¡your¡¡sample¡£¡¡
Forecasting¡¡
Sales¡¡drive¡¡much¡¡of¡¡a¡¡business¡¯s¡¡activities£»¡¡it¡¡determines¡¡cash¡¡flow£»¡¡stock¡¡
levels£»¡¡production¡¡capacity¡¡and¡¡ultimately¡¡how¡¡profitable¡¡or¡¡otherwise¡¡a¡¡
business¡¡will¡¡be£»¡¡so£»¡¡unsurprisingly£»¡¡much¡¡effort¡¡goes¡¡into¡¡a¡£¡£empting¡¡to¡¡
predict¡¡future¡¡sales¡£¡¡A¡¡sales¡¡forecast¡¡is¡¡not¡¡the¡¡same¡¡as¡¡a¡¡sales¡¡objective¡£¡¡An¡¡
objective¡¡is¡¡what¡¡you¡¡want¡¡to¡¡achieve¡¡and¡¡will¡¡shape¡¡a¡¡strategy¡¡to¡¡do¡¡so¡£¡¡A¡¡
forecast¡¡is¡¡the¡¡most¡¡likely¡¡future¡¡oute¡¡given¡¡what¡¡has¡¡happened¡¡in¡¡the¡¡
past¡¡and¡¡the¡¡momentum¡¡that¡¡provides¡¡for¡¡the¡¡business¡£¡¡
The¡¡ponents¡¡of¡¡any¡¡forecast¡¡are¡¡made¡¡up¡¡of¡¡three¡¡ponents¡¡and¡¡to¡¡
get¡¡an¡¡accurate¡¡forecast¡¡you¡¡need¡¡to¡¡depose¡¡the¡¡historic¡¡data¡¡to¡¡be¡£¡£er¡¡
understand¡¡the¡¡impact¡¡of¡¡each¡¡on¡¡the¡¡end¡¡result£º¡¡
¡£¡¡Underlying¡¡trend£º¡¡This¡¡is¡¡the¡¡general¡¡direction£»¡¡up£»¡¡flat¡¡or¡¡down£»¡¡over¡¡
the¡¡longer¡¡term£»¡¡showing¡¡the¡¡rate¡¡of¡¡change¡£¡¡
¡£¡¡Cyclical¡¡factors£º¡¡These¡¡are¡¡the¡¡short¡term¡¡influences¡¡that¡¡regularly¡¡superimpose¡¡
themselves¡¡on¡¡the¡¡trend¡£¡¡For¡¡example£»¡¡in¡¡the¡¡summer¡¡months¡¡
you¡¡would¡¡expect¡¡sales¡¡of¡¡certain¡¡products£»¡¡swimwear£»¡¡ice¡¡creams¡¡and¡¡
suntan¡¡lotion£»¡¡for¡¡example£»¡¡to¡¡be¡¡higher¡¡than£»¡¡say£»¡¡in¡¡the¡¡winter¡£¡¡Ski¡¡
equipment¡¡would¡¡probably¡¡follow¡¡a¡¡reverse¡¡pa¡£¡£ern¡£¡¡
¡£¡¡Random¡¡movements£º¡¡These¡¡are¡¡irregular£»¡¡random¡¡spikes¡¡up£»¡¡or¡¡down£»¡¡
caused¡¡by¡¡unusual¡¡and¡¡unexplained¡¡factors¡£¡¡
Using¡¡averages¡¡
The¡¡simplest¡¡forecasting¡¡method¡¡is¡¡to¡¡assume¡¡that¡¡the¡¡future¡¡will¡¡be¡¡more¡¡
or¡¡less¡¡the¡¡same¡¡as¡¡the¡¡recent¡¡past¡£¡¡The¡¡two¡¡most¡¡mon¡¡techniques¡¡that¡¡
use¡¡this¡¡approach¡¡are£º¡¡
¡£¡¡Moving¡¡average£º¡¡This¡¡takes¡¡a¡¡series¡¡of¡¡data¡¡from¡¡the¡¡past£»¡¡say¡¡the¡¡last¡¡
six¡¡months¡¯¡¡sales£»¡¡adds¡¡them¡¡up£»¡¡divides¡¡by¡¡the¡¡number¡¡of¡¡months¡¡and¡¡
uses¡¡that¡¡figure¡¡as¡¡being¡¡the¡¡most¡¡likely¡¡forecast¡¡of¡¡what¡¡will¡¡happen¡¡
in¡¡month¡¡7¡£¡¡This¡¡method¡¡works¡¡well¡¡in¡¡a¡¡static£»¡¡mature¡¡marketplace¡¡
where¡¡change¡¡happens¡¡slowly£»¡¡if¡¡at¡¡all¡£¡¡
¡£¡¡Weigh