八喜电子书 > 经管其他电子书 > 惊人的假说 [英]弗兰西斯[1].克里克 >

第24部分

惊人的假说 [英]弗兰西斯[1].克里克-第24部分

小说: 惊人的假说 [英]弗兰西斯[1].克里克 字数: 每页4000字

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



反传网络,但又有显著差异,即它的中间层单元之间具有强的相互连接。这些连接的强度通常是固定的,并不改变。通常短程连接是兴奋性的,而长程的则是抑制性的,一个单元倾向于与其近邻友好而与远处的相对抗。这种设置意味着中间层的神经元为整个网络的活动而竞争。在一个精心设计的网络中,在任何一次试验中通常只有一个胜者。
    这种网络并没有外部教师。网络自己寻找最佳反应。这种学习算法使得只有胜者及其近邻单元调节输入权重。这种方式使得当前的那种特殊反应在将来出现可能性更大。由于学习算法自动将权重推向所要求的方向,每个隐单元将学会与一种特定种类的输入相联系。①
    到此为止我们考虑的网络处理的是静态的输入,并在一个时间间隔后产生一个静态的输出。很显然在脑中有一些操作能表达一个时间序列,如口哨吹出一段曲调或理解一种语言并用之交谈。人们初步设计了一些网络来着手解决这个问题,但目前尚不深入。(NETtalk确实产生了一个时间序列,但这只是数据传入和传出网络的一种方法,而不是它的一种特性。)
    语言学家曾经强调,目前在语言处理方面(如句法规则)根据人工智能理论编写的程序处理更为有效。其本质原因是网络擅长于高度并行的处理,而这种语言学任务要求一定程度的序列式处理。脑中具有注意系统,它具有某种序列式的本性,对低层的并行处理进行操作,迄今为止神经网络并未达到要求的这种序列处理的复杂程度,虽然它应当出现。
    真实神经元(其轴突、突触和树突)都存在不可避免的时间延迟和处理过程中的不断变化。神经网络的大多数设计者认为这些特性很讨厌,因而回避它们。这种态度也许是错的。几乎可以肯定进化就建立在这些改变和时间延迟上,并从中获益。
    对这些神经网络的一种可能的批评是,由于它们使用这样一种大体上说不真实的学习算法,事实上它们并不能揭示很多关于脑的情况。对此有两种答案。一种是尝试在生物学看来更容易接受的算法,另一种方法更有效且更具有普遍性。加利福尼亚州立大学圣迭戈分校的戴维·齐帕泽(David Zipser),一个由分子生物学家转为神经理论学家,曾经指出,对于鉴别研究中的系统的本质而言,反传算法是非常好的方法。他称之为“神经系统的身份证明”。他的观点是,如果一个网络的结构至少近似于真实物体,并了解了系统足够多的限制,那么反传算法作为一种最小化误差的方法,通常能达到一个一般性质相似于真实生物系统的解。这样便在朝着了解生物系统行为的正确方向上迈出了第一步。
    如果神经元及其连接的结构还算逼真,并已有足够的限制被加入到系统中,那么产生的模型可能是有用的,它与现实情况足够相似。这样便允许仔细地研究模型各组成部分的行为。与在动物上做相同的实验相比,这更加快速也更彻底。
    我们必须明白科学目标并非到此为止,这很重要。例如,模型可能会显示,在该模型中某一类突触需要按反传法确定的某种方式改变。但在真实系统中反传法并不出现。因此模拟者必须为这一类突触找到合适的真实的学习规则。例如,那些特定的突触或许只需要某一种形式的赫布规则。这些现实性的学习规则可能是局部的,在模型的各个部分不尽相同。如果需要的话,可能会引入一些全局信号,然后必须重新运行该模型。
    如果模型仍能工作,那么实验者必须表明这种学习方式确实在预测的地方出现,并揭示这种学习所包含的细胞和分子机制以支持这个观点。只有如此我们才能从这些“有趣”的演示上升为真正科学的有说服力的结果。
    所有这些意味着需要对大量的模型及其变体进行测试。幸运的是,随着极高速而又廉价的计算机的发展,现在可以对许多模型进行模拟。这样人们就可以检测某种设置的实际行为是否与原先所希望的相同,但即便使用最先进的计算机也很难检验那些人们所希望的巨大而复杂的模型。
    “坚持要求所有的模型应当经过模拟检验,这令人遗憾地带来了两个副产品。如果一个的假设模型的行为相当成功,其设计者很难相信它是不正确的。然而经验告诉我们,若干差异很大的模型也会产生相同的行为。为了证明这些模型哪个更接近于事实,看来还需要其他证据,诸如真实神经元及脑中该部分的分子的准确特性。
    另一种危害是,对成功的模型过分强调会抑制对问题的更为自由的想像,从而会阻碍理论的产生。自然界是以一种特殊的方式运行的。对问题过于狭隘的讨论会使人们由于某种特殊的困难而放弃极有价值的想法。但是进化或许使用了某些额外的小花招来回避这些困难。尽管有这些保留,模拟一个理论,即便仅仅为了体会一下它事实上如何工作,也是有用的。
    我们对神经网络能总结出些什么呢?它们的基础设计更像脑,而不是标准计算机的结构,然而,它们的单元并没有真实神经元那样复杂,大多数网络的结构与新皮层的回路相比也过于简单。目前,如果一个网络要在普通计算机上在合理的时间内进行模拟,它的规模只能很小。随着计算机变得越来越快,以及像网络那样高度并行的计算机的生产商业化,这会有所改善,但仍将一直是严重的障碍。
    尽管神经网络有这些局限性,它现在仍然显示出了惊人的完成任务的能力。整个领域内充满了新观点。虽然其中许多网络会被人们遗忘,但通过了解它们,抓住其局限性并设计改进它们的新方法,肯定会有坚实的发展。这些网络有可能具有重要的商业应用。尽管有时它会导致理论家远离生物事实,但最终会产生有用的观点和发明。也许所有这些神经网络方面的工作的最重要的结果是它提出了关于脑可能的工作方式的新观点。
    在过去,脑的许多方面看上去是完全不可理解的。得益于所有这些新的观念,人们现在至少瞥见了将来按生物现实设计脑模型的可能性,而不是用一些毫无生物依据的模型仅仅去捕捉脑行为的某些有限方面。即便现在这些新观念已经使我们对实验的讨论更为敏锐,我们现在更多地了解了关于个体神经元所必须掌握的知识。我们可以指出回路的哪些方面我们尚不足够了解(如新皮层的向回的通路),我们从新的角度看待单个神经元的行为,并意识到在实验日程上下一个重要的任务是它们整个群体的行为。神经网络还有很长的路要走,但它们终于有了好的开端。
    ①查尔斯·安德森(charles Anderson)和戴维·范·埃森提出脑中有些装置将信息按规定路线从一处传至另一处。不过这个观点尚有争议。
    ①该网络以一个早期网络为基础。那个网络被称为“自旋玻璃”,是物理学家受一种理论概念的启发而提出的。
    ①这对应于一个适定的数学函数(称为“能量函数”,来自自旋玻璃)的(局域)极小值。霍普菲尔德还给出了一个确定权重的简单规则以使网络的每个特定的活动模式对应于能量函数的一个极小值。
    ①对于霍普菲尔德网络而言,输出可视为网络存贮的记忆中与输出(似为“输入”之误——译者注)紧密相关的那些记忆的加权和。
    ①在1968年,克里斯托夫·朗格特… 希金斯(Christopher Longuet…Higgins)从全息图出发发明了一种称为“声音全息记录器”(holophone)的装置。此后他又发明了另一种装置称为“相关图”,并最终形成了一种特殊的神经网络形式。他的学生戴维·威尔肖在完成博士论文期间对其进行了详细的研究。
    (2)他们和其他一些想法接近的理论家合作,在1981年完成了《联想记忆的并行模式》,由杰弗里·希尔顿(Geoffrey Hinton)和吉姆·安德森编著。这本书的读者主要是神经网络方面的工作者,它的影响并不像后一本书那样广泛。
    (1) PDP即平行分布式处理(Parallel Distributed Processing)的缩写。
    ①更准确他说是误差的平方的平均值在下降,因此该规则有时又叫做最小均方(LMS)规则。
    ① 29个“字母”各有一个相应的单元;这包括字母表中的26个字母,还有三个表示标点和边界。因而输入层需要29x7=203个单元。
    ②例如,因为辅音p和b发音时都是以拢起嘴唇开始的,所以都称作“唇止音”。
    ③中间层(隐层)最初有80个隐单元,后来改为120个,结果能完成得更好。机器总共需要调节大约2万个突触。权重可正可负。他们并没有构造一个真正的平行的网络来做这件事,而是在一台中型高速计算机上(一台VAX 11//780 FPA)模拟这个网络。
    ①计算机的工作通常不够快,不能实时地发音,因而需要先把输出录下来,再加速播放,这样人们才能听明白。
    ②塞吉诺斯基和罗森堡还表明,网络对于他们设置的连接上的随机损伤具有相当的抵抗力。在这种环境下它的行为是”故障弱化”。他们还试验以11个字母(而不是7个字母)为一组输入。这显著改善了网络的成绩。加上第二个隐单元层并不能改善它的成绩,但有助于网络更好地进行泛化。
    ①除了上面列出的以外,NEttalk还有许多简化。虽然作者们信奉分布式表达,在输入输出均有“祖母细胞”即,例如有一个单元代表“窗口中第三个位置上的字母a”。这样做是为了降低计算所需要的时间,是一种合理的简化形式。虽然数据顺序传入7个字母的方式在人工智能程序是完全可以接受的,却显得与生物事实相违背。输出的“胜者为王”这一步并不是由“单元”完成的,也不存在一组单元去表达预计输出与实际输出之间的差异(即教师信号)。这些运算都是由程序执行的。
    ②这种比较不太公平,因为神经网络的一个单元更好的考虑是等价于脑中一小群相神经元。因而更合适的数字大约是8万个神经元(相当于一平方毫米皮层下神经元的数目)。
    ①它是由斯蒂芬·格罗斯伯格、托伊沃·科霍宁等人发展的。
    ①我不打算讨论竞争网络的局限性。显然必须有足够多的隐单元来容纳网络试图从提供的输入中所学的所有东西,训练不能太快,也不能太慢,等等。这种网络要正确工作需要仔细设计。毫无疑问,不久的将来会发明出基于竞争学习基本思想的更加复杂的应用。 

'英'弗兰西斯。克里克《惊人的假说》

第十四章 视觉觉知(1) 
    “宇宙就像一部展现在我们眼前的伟大的著作。哲学就记载在这上面。但是如果我们不首先学习并掌握书写它们所用的语言和符号,我们就无法理解它们。”
    ——伽利略
    现在让我们总瞰一下到目前为止我们所涉及到的领域。本书的主题是“惊人的假说”——即我们每个人的行为都不过是一个拥有大量相互作用的神经元群体活动的体现。克里斯托弗·科赫
    (Christof Koch)和我认为探索意识问题的最佳途径是研究视觉觉知,这包括研究人类及其近亲,然而,人们观看事物并不是一件直截了当的事情,它是一个建设性的、复杂的处理过程。心理学研究表明,它具有高度的并行性,又按照一定的顺序加工,而“注意”机制则处于这些并行处理的顶端。心理学家们提出过若干种理论试图来解释视觉过程的一般规律,但没有一种更多地涉及脑中神经元的行为。
    脑本身是由神经元及大量支持细胞构成的。从分子角度考虑每个神经元都是一个复杂的对象,常具有无规则的、异乎寻常的形状。神经元是电子信号装置。它们对输入的电学和化学信号快速地作出反应,并将它们的高速电化学脉冲沿轴突发送出去,其传送距离通常比细胞体直径还要大许多倍。脑中的这些神经元数目巨大,它们有许多不同的类型。这些神经元彼此具有复杂的连接。
    与大多数现代计算机不同,脑不是一种通用机。在完全发育好以后,脑的每一部分完成某些不同的专门任务。而另一方面,在几乎所有的反应中,都有许多部分相互作用。这种一般性观念得到了人脑研究的支持,这些研究包括对脑损伤者的研究以及使用现代扫描方法从头颅外进行的对人脑的研究。
    视觉系统的不同的皮层区的数目比人们所预料的要多得多。它们按一种近似等级的方式连接而成。在较低级的皮层区,神经元到眼睛的连接最短,它们主要对视野中一小块区域中的相对简单的特征敏感,尽管如此,这些神经无也受该区域所处的视觉环境影响。而较高级皮层区的神经元则对复杂得多的视觉目标(如脸或手)有反应,对该物体在视野中的位置并不敏感。(目前看来)似乎并不存在单独的皮层区域与视觉觉知全部内容相对应。
    为了理解脑如何工作,我们必须发展出描述神经元集团间如何相互作用的理论模型。目前这些模型对神经元进行了过分的简化。尽管现代计算机比其上一代在运算速度上快得多,也只能对数目很少的一群这类简化神经元及其相互作用进行模拟。尽管如此,虽然这些不同类型的简化模型仍显原始:却经常表现出一些令人吃惊的行为。这些行为与脑的某些行为有相似之处。它们为我们研究脑所可能采取的工作方式提供了新的途径。
    以上是背景知识。在此基础上,我们着手解决视觉觉知问题,即:如何从神经元活动的角度来解释我们所看见的事物。换句话说,视觉觉知的“神经关联”是什么?这些“觉知神经元”究竟位于何处呢?它们是集中在一小块地方还是分散在整个脑中?它们的行为是否有什么特别之处?
    作为开始,让我们首先回顾一下第二章曾概述的各种观点。视觉觉知究竟包括哪种心理学处理过程呢?如果我们能够找出这些不同的处理过程在脑中的确切位置,那或许会对定位

返回目录 上一页 下一页 回到顶部 1 1

你可能喜欢的