八喜电子书 > 经管其他电子书 > 万物简史:为万物写史,为宇宙立传 >

第7部分

万物简史:为万物写史,为宇宙立传-第7部分

小说: 万物简史:为万物写史,为宇宙立传 字数: 每页4000字

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



  这是很令人吃惊的——犹如有人说他已经找到了治愈癌症的方法,但又记不清处方放在哪里了。在哈雷的敦促之下,牛顿答应再算一遍,便拿出了一张纸。他按诺言做了,但做得要多得多。有两年时间,他闭门不出,精心思考,涂涂画画,最后拿出了他的杰作:《自然哲学的数学原理》,更经常被称之为《原理》。
  极其偶然,历史也只有过几次吧,有人作出如此敏锐而又出人意料的观察,人们无法确定究竟哪个更加惊人——是那个事实还是他的思想。《原理》的问世就是这样的一个时刻。
  它顿时使牛顿闻名遐迩。在他的余生里,他将生活在赞扬声和荣誉堆里,尤其成了英国因科学成就而被封为爵士的第一人。连伟大的德国数学家戈特弗里德·莱布尼兹也认为,他对数学的贡献比得上在他之前的所有成就的总和,尽管在谁先发明微积分的问题上,牛顿曾跟他进行过长期而又激烈的斗争。“没有任何凡人比牛顿本人更接近神。”哈雷深有感触地写道。他的同时代人以及此后的许多别人对此一直怀有同感。
  《原理》一直被称为“最难看懂的书之一”(牛顿故意把书写得很难,那样就不会被他所谓的数学“门外汉”纠缠不休),但对看得懂的人来说,它是一盏明灯。它不仅从数学的角度解释了天体的轨道,而且指出了使天体运行的引力——万有引力。突然之间,宇宙里的每种运动都说得通了。
  《原理》的核心是牛顿的三大运动定律(定律非常明确地指出,物体朝着推力的方向运动;它始终做直线运动,直到某种别的力起了作用,使它慢下来或改变它的方向;每个作用都有相等的反作用)以及他的万有引力定律。这说明,宇宙里的每个物体都吸引每个别的物体。这似乎不大可能,但当你在这里坐着的时候,你在用你自己小小的(的确很小)引力场吸引你周围的一切事物——墙壁、天花板、灯、宠物猫。而这些东西也在吸引你。是牛顿认识到,任何两个物体的引力,再用费曼的话来说,“与每个物体的质量成正比,以两者之间距离的平方反比来变化”。换一种说法,要是你将两个物体之间的距离翻一番,两者之间的引力就弱4 倍。这可以用下面的公式来表示:
  F=G
  这个公式对我们大多数人来说当然是根本没有实际用途的,但至少我们欣赏它的优美,它的简洁。无论你走到哪里,只要做两个快速的乘法,一个简单的除法,嘿,你就知道你的引力状况。这是人类提出的第一个真正有普遍意义的自然定律,也是牛顿到处深受人们尊敬的原因。
  《原理》的产生不是不带戏剧性的。令哈雷感到震惊的是,当这项工作快要完成的时候,牛顿和胡克为谁先发明了平方反比定律吵了起来,牛顿拒绝公开关键的第三卷,而没有这一卷,前面两卷就意义不大。只是在进行了紧张的穿梭外交,说了许多好话以后,哈雷才最后设法从那位脾气怪僻的教授那里索得了最后一卷。
  哈雷的烦恼并没有完全结束。英国皇家学会本来答应出版这部作品,但现在打了退堂鼓,说是财政有困难。前一年,该学会曾经为《鱼类史》下了赌注,该书成本很高,结果赔了老本;他们担心一本关于数学原理的书不会有多大销路。哈雷尽管不很富裕,还是自己掏钱支付了这本书的出版费用。和以往一样,牛顿分文不出。更糟糕的是,哈雷这时候刚刚接受学会的书记员的职位,他被告知,学会已经无力给他答应过的50英镑年薪,只能用几本《鱼类史》来支付。
  牛顿定律解释了许许多多事情——海洋里潮水的飞溅和翻腾;行星的运动;为什么炮弹着地前沿着一条特定的弹道飞行;虽然我们脚下的行星在以每小时几百公里的速度旋转,为什么我们没有被甩进太空——这些定律的全部意义要费好大工夫才能领会。但是,它们揭示的事实几乎马上引发了争议。
  这意味着,地球不是滴溜滚圆的。根据牛顿的学说,地球自转产生的离心力,造成两极有点扁平,赤道有点鼓起。因此,这颗行星稍稍呈扁圆形。这意味着,1 度经线的长度,在意大利和苏格兰是不相等的。说得确切一点,离两极越远,长度越短。这对那些认为地球是个滴溜滚圆的球体,并以此来测量这颗行星的人来说不是个好消息。那些人就是大家。
  在半个世纪的时间里,人们想要测算出地球的大小,大多使用很严格的测量方法。最先做这种尝试的人当中有一位英国数学家,名叫理查德·诺伍德。诺伍德在年轻时代曾带着个按照哈雷的式样制作的潜水钟去过百慕大,想要从海底捞点珍珠发大财。这个计划没有成功,因为那里没有珍珠,而且诺伍德的潜水钟也不灵,但浪费一次经历的也不止诺伍德一个人。17世纪初,百慕大在船长中间以难以确定位置著称。问题是海洋太大,百慕大太小,用来解决这个差异的航海仪器严重不足。连1 海里的长度还都说法不一。关于海洋的宽度,最细小的计算错误也会变得很大,因此船只往往以极大的误差找不到百慕大这样大小的目标。诺伍德爱好三角学,因此也爱好三角形,他想在航海方面用上一点数学,于是决定计算1 度经线的长度。
  诺伍德背靠着伦敦塔踏上了征途,历时两年向北走了450 公里来到约克,一边走一边不停地拉直和测量一根链子。在此过程中,他考虑到土地的起伏、道路的弯曲,始终一丝不苟地对数据进行校正。最后一道工序,是在一年的同一天,一天的同一时间,在约克测量太阳的角度。他已经在伦敦做完第一次测量。根据这次测量,他推断,他可以得出地球1 度经线的长度,从而计算出地球的整个周长。这几乎是一项雄心勃勃的工作——1 度的长度只要算错一点儿,整个长度就会相差许多公里——但实际上,就像诺伍德自豪地竭力声称的那样,他的计算非常精确,相差“微乎其微”——说得更确切一点,相差不到550 米。以米制来表达,他得出的数字是每度经线的长度为110。72公里。
  1637年,诺伍德一部在航海方面的杰作《水手的实践》出版,立即赢得一批读者。它再版了17次,他去世25年以后仍在印刷。诺伍德携家人回到了百慕大,成为一名成功的种植园主,空闲时间便以他心爱的三角学来消遣。他在那里活了38年。要是对大家说,他这38年过得很幸福,受到了人们的敬仰,大家一定会很高兴。但是,实际上并非如此。在离开英格兰以后的航行途中,他两个年幼的儿子跟纳撒尼尔·怀特牧师同住一个船舱,不知怎的让这位年轻的牧师深受精神创伤,在他余生的许多时间里会想方设法来找诺伍德的麻烦。
  诺伍德的两个女儿的婚姻都不尽如人意,给她们的父亲带来了额外的痛苦。有个女婿可能受那位牧师的唆使,不断为了小事去法院控告诺伍德,惹得他非常气愤,还不得不经常去百慕大的那一头为自己辩护。最后,在17世纪50年代,百慕大开始流行审讯巫师,诺伍德提心吊胆地度过了最后的岁月,担心自己那些带有神秘符号的三角学论文会被看做在跟魔鬼交流,自己会被可怕地判处死刑。我们对诺伍德的情况知之甚少,反正他在不愉快环境中度过了晚年,实际上也许是活该。肯定没错的是,他的晚年确实是这样度过的。
  与此同时,测定地球周长的势头已经到达法国。在那里,天文学家让·皮卡尔发明了一种极其复杂的三角测绘法,用上了扇形板、摆钟、天顶象限仪和天文望远镜(用来观察土星卫星的运动)。他花了两年时间穿越法国,用三角测绘法进行测量;之后,他宣布了一个更加精确的测量结果:1 度经线为110。46公里。法国人为此感到非常自豪,但这个结果是建立在地球是个圆球这个假设上的——而现在牛顿说地球不是这种形状的。
  更为复杂的是,皮卡尔死后,乔瓦尼和雅克·卡西尼父子在更大的区域内重复了皮卡尔的实验。他们得出的结果显示,地球鼓起的地方不是在赤道,而是在两极——换句话说,牛顿完全错了。正因为如此,科学院才派遣布格和孔达米纳去南美洲重新测量。
  他们选择了安第斯山脉,因为他们需要测量靠近赤道的地方,以确定那里的圆度是否真有差异,还因为他们认为山区的视野比较开阔。实际上,秘鲁的大山经常云雾笼罩,这个小组常常不得不等上几个星期,才等得上一个小时的晴天来进行测量。不仅如此,他们选了个地球上几乎最难对付的地形。秘鲁人称这种地形是“非常少见”的——这话绝对没错儿。两个法国人不仅不得不翻越几座世界上最具挑战性的大山——连他们的骡子也过不去的大山——而且,若要抵达那些大山,他们不得不涉过几条湍急的河流,钻过密密的丛林,穿越几公里高高的卵石沙漠,这些地方在地图上几乎没有标记,远离供给来源。但是,布格和孔达米纳是坚忍不拔的人。他们不屈不挠,不怕风吹日晒,坚持执行任务,度过了漫长的九年半时间。在这个项目快要完成的时候,他们突然得到消息,说另一个法国考察队在斯堪的纳维亚半岛北部进行测量(面对自己的艰难困苦,从寸步难行的沼泽地,到危机四伏的浮冰),发现1 度经线在两极附近果真要长,正如牛顿断言的那样。地球在赤道地区的测量结果,要比环绕两极从上到下测量的结果厚出43公里。
  因此,布格和孔达米纳花了将近10年时间,得出了一个他们不希望得出的结果,而且发现这个结果还不是他们第一个得出的。他们没精打采地结束了测量工作,只是证明第一个法国小组是正确的。然后,他们依然默不作声地回到海边,分别乘船踏上了归途。
  牛顿在《原理》中作的另一个推测是:一根挂在大山附近的铅锤线,会受到大山和地球引力质量的影响,稍稍向着大山倾斜。这个推测很有意思。要是你精确测量那个偏差,计算大山的质量,你可以算出万有引力的常数——即引力的基本值,叫做G—— 同时还可以算出地球的质量。
  布格和孔达米纳在秘鲁的钦博拉索山做过这种试验,但是没有成功,一方面是因为技术难度很大,一方面是因为他们内部吵得不可开交。因此,这件事被暂时搁置下来,30年后才在英国由皇家天文学家内维尔·马斯基林重新启动。达娃·索贝尔在她的畅销书《经线》中,把马斯基林说成是个傻瓜和坏蛋,不会欣赏钟匠约翰·哈里森的卓越才华,这话也许没错儿。但是,我们要在她书里没有提到的其他方面感激马斯基林,尤其要感激他制定了称地球质量的成功方案。
  马斯基林意识到,问题的关键在于找到一座形状规则的山,能够估测它的质量。在他的敦促之下,英国皇家学会同意聘请一位可靠的人去考察英伦三岛,看看能否找到这样的一座山。马斯基林恰好认识这样的一个人——天文学家和测量学家查尔斯·梅森。马斯基林和梅森11年前已经成为朋友,他们曾一块儿承担一个测量一起重大天文事件的项目:金星凌日现象。不知疲倦的埃德蒙·哈雷几年前已经建议,要是在地球上选定几个位置测量一次这种现象,你就可用三角测绘法的定律来计算地球到太阳的距离,并由此计算出到太阳系所有其他天体的距离。
  不幸的是,所谓的金星凌日是一件不规则的事。这一现象结对而来,相隔8 年,然后一个世纪甚至更长时间都不发生一次。在哈雷的生命期里不会发生这种现象。1 但是,这个想法一直存在。1761年,在哈雷去世将近20年以后,当下一次凌日准时来到的时候,科学界已经作好准备工作——准备得比观测以往任何一次天文现象都要充分。
  凭着吃苦的本能——这是那个时代的特点——科学家们奔赴全球100 多个地点——其中有俄罗斯西伯利亚、中国、南非、印度尼西亚以及美国威斯康星州的丛林。法国派出了32名观测人员,英国18名,还有来自瑞典、俄罗斯、意大利、德国、冰岛等国的观测人员。
  这是历史上第一次国际合作的科学活动,但它几乎到处困难重重。许多观测人员遇上了战争、疾病或海难。有的抵达了目的地,但打开箱子一看,只见仪器已经破碎或被热带的灼人的阳光烤弯。法国人似乎命中注定要再一次遭遇倒霉的厄运。让·沙佩乘马车呀,乘船呀,乘雪橇呀,花了几个月才到达西伯利亚,每一颠簸都得小心护着容易损坏的仪器。最后只剩下关键的一段行程,却被一条涨水的河流挡住了去路。原来,就在他到达前不久,当地下了一场罕见的春雨。当地人马上归罪于他,因为他们看到他把古怪的仪器对准天空。沙佩设法逃得性命,但没有进行任何有意义的测量工作。
  更倒霉的是纪晓姆·让蒂,他的经历蒂姆西·费里斯在《在银河系里成长》一书里作了精彩而简要的描述。让蒂提前一年从法国出发,打算在印度观测这次凌日现象,但遇到了种种挫折,发生凌日的那一天还在海上——这几乎是最糟糕的地方,因为测量需要保持平稳状态,而这在颠簸的船上根本无法做到。
  让蒂并不气馁,继续前往印度,等待1769年的下一次凌日现象。他有8 年的准备时间,因此建立了一个一流的观察站,他一次又一次测试他的仪器,把准备工作做得完美无缺。1769年6 月4 日是发生第二次凌日现象的日子。早晨醒来,他看到是个艳阳天;但是,正当金星从太阳表面通过的时候,一朵乌云挡住了太阳,在那里停留了3 小时14分7秒的时间,等到云开雾散,金星凌日的过程已经结束了。
  让蒂大失所望地收拾仪器,前往最近的港口,途中患了痢疾,有将近一年时间卧床不起。他不顾身体依然虚弱,最后登上了一条船。这条船在非洲近海的一次飓风中几乎失事。出门十一年半以后,他终于回到家里。他一无所获,却发现他的亲戚已经宣布他死亡,争先恐后地夺走了他的财产。
  比较

返回目录 上一页 下一页 回到顶部 0 0

你可能喜欢的