八喜电子书 > 文学名著电子书 > 物理世界奇遇记 >

第11部分

物理世界奇遇记-第11部分

小说: 物理世界奇遇记 字数: 每页4000字

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



数所起的作用,正好就是它决定了这两个测不准的量之间的关系。
注意,现在我要把这个球放进三角木框里,把它的位置明确地限
制起来了。”
那个球一放进木框里,整个三角框的内部就到处闪烁着象牙
的白光。



“你看,”教授说,“我把台球的位置限定在三角框里几分
米范围内了,这就使速度产生了相当可观的测不准性,所以台球
在木框里迅速地运动。”
“你能让它停下吗?”汤普金斯先生问道。
“不,从物理学上说,这是不可能的。任何一个处在封闭空
间内的物体都有一定的运动——我们物理学家把它称为零点运动。
举个例子吧,任何原子中的电子的运动都属于这一类。”
就在汤普金斯先生注视那个球像笼子里的老虎一样,不断地
在框子里来回猛冲的时候,发生了一件极不寻常的事。那个球竟
直接穿过三角框的框壁“漏”了出来,接着就向球台远处那个角
落滚过去。事情怪就怪在它确实不是越过三角框跳出来,而真的
是穿过没有空隙的木壁钻出来,一点也没有离开台面。
“看到了吗?”教授说,“事实上,这恰好是量子论的一个
最有意思的后果。任何一件东西,只要它的能量大到在穿过围墙
以后还能继续跑开,你就不可能把它囚禁在封闭的围墙里。这个
物体早晚总是要直接从围墙‘漏出’跑掉的。”
“要是这样,我就再也不上动物园去了。”汤普金斯先生断
然地说,他那活泼的想象力已经描绘出一幅从笼子里“漏出”的
老虎同狮子打架的情景了。然后,他的思想又转到一个稍稍不同
的方向上去:要是他的汽车也从锁得好好的车库里漏出来呢?他
想象一辆好好锁在车库里的汽车,突然像中世纪传说中的老妖精
那样,“钻过”汽车库的墙壁闯了出来。



“我得等待多长时间,”他问教授,“才能看到一辆汽车——
可不是用这里这种愚弄人的材料制造的,而是真正用钢铁制成的
汽车——穿过汽车库的砖墙‘漏’出来?我倒确实很想看一看哩!”
教授很快地在脑子里算了一下,便把答案准备好了,“这大
概需要等待100 000 000 … 000年。”
尽管汤普金斯先生在银行业务中经常接触到巨大的数字,他
却弄不清教授所说的数字中到底有多少个零——反正数字是够长
的,长到他完全不必担心他的汽车会自己跑掉。
“就算我相信你所说的一切都是正确的,可我仍旧不明白,
这样的事怎么能够观察到,如果我们没有这里这些台球的话。”
“这是一个合理的反对意见,”教授说,“当然,我的意思
并不是说,在你经常接触的那些物体上,也能够观察到量子现象。
问题在于,量子规律只有在应用到原子或电子这类非常小的质量
上时,它们的效应才会变得显著得多。对于这些粒子来说,量子
效应已经大到一般力学完全失效的程度。两个原子之间的碰撞,
看起来完全同你刚才观察到的两个‘量子象牙’台球的碰撞一样;
而电子在原子中的运动,则同我放进三角框里的台球的‘零点运
动’非常相似。”
“电子是不是常常从原子中跑出?”汤普金斯先生问道。
“不,不是的,”教授急忙回答说,“根本不会发生这种情
形。你大概还记得我说过,物体一旦通过势垒漏出,还必须有足
够的能量跑开。电子是依靠它所带的负电荷与原子核中质子的正
电荷之间的静电引力,才保持在原子里的。电子没有足够的能量
摆脱这种吸引,所以它就无法跑开。如果你想看到粒子漏出的情
况,那么,我建议你去观察重原子核。从某种意义上说,重原子
核的表现就像是由一些α粒子组成的。”
“α粒子?那是什么?”
“α粒子是由于某种历史原因而给氦原子核起的名称。它由
两个中子和两个质子组成,而且结合得异常牢固:那4个粒子可
以非常有效地‘贴在一起’。就像我刚刚说过的,由于α粒子结
合得极其牢固,在某些情况下,重原子核的表现就像是一些α粒
子的集合体,而不像是由单个中子和质子组成的。虽然这些α粒
子也在原子核的整个体积内运动着,但是,它们却依靠那种把核
子结合在一起的短程核引力而保持在原子核的体积内,至少在正
常状况下是这样的。但是,常常也有一个α粒子漏了出来:它跑
到那种把它保持在原子核内的核引力的作用范围外。事实上,它
现在只受到它自己的正电荷与它留在后面的其他α粒子的正电荷
之间的长程静电斥力的作用。因此,现在这个α粒子便被推到原
子核的外面了。这是放射性原子核的一种衰变方式,你可以看出,
这个α粒子同你那辆锁在车库里的汽车十分相似,只不过。粒子
的漏出要比你的汽车快得多罢了!”
在进行这次长谈以后,汤普金斯先生感到疲惫不堪,他精神
涣散。漫无目标地四顾着。他的注意力被房间角落里一座巨大的
老爷时钟吸引住了,它那长长的老式钟摆正在缓慢地来回摆动着。
“我看,你是对这座时钟发生兴趣了,”教授说,“这也是
一种不大寻常的机器哩,不过,它目前已经过时了。这座时钟所
代表的,正好是人们最初思考量子现象时所用的途径。它的钟摆
的装法,使得摆幅只能够改变有限多次。可是,现在所有钟表制
造者都宁愿采用巧妙的弥散摆。”
“啊,我希望我能够理解这一切复杂的事物!”汤普金斯先
生感慨地说。
“好极了,”教授立即反应说,“我是在去作量子论演讲的
途中拐进这家酒馆来的,因为我从窗外看到了你。要是我不准备
迟到,现在我就该走了。你愿意一块去吗?”
“好的,我去。”汤普金斯先生说。
像通常那样,演讲厅里坐满了学生,汤普金斯先生虽然只能
在台阶上找个座位,但已觉得很满意了。

女士们,先生们——教授开始演讲了——

在前两次演讲中,我曾努力对你们说明,由于发现一切物理
速度都有一个上限,以及对直线这个概念进行了分析,我们完全
改造了19世纪的时空观念。
但是,对物理学基础进行批判分析所得到的进展,并没有停
止在这个阶段上,接着又有了一些更加令人惊奇的发现和结论。
我这里所指的是物理学中那门被称为量子论的分支学科,它同时
间和空间自身的性质关系不大,但同物体在时间和空间中的相互
作用和运动却有密切的关系。
古典物理学总是认为,不需要任何证明就可以肯定地说,通
过改变实验的条件,可以把任何两个物理客体之间的相互作用降
低到要多小有多小,在必要时甚至可以把它降低到实际上等于零。
譬如说,在研究某些过程所产生的热时,人们要担心放进温度计
会把一部分热量带走,从而使所要观察的过程不能正常进行,但
是,实验工作者们总是确信,采用比较小的温度计或非常精致的
温差电偶,就能够把这种干扰降低到所要求的精确度极限以下。
过去人们确信,从原理上说,任何一种物理过程都可以用任
意高的精确度进行观察,观察本身并不会对所观察的过程产生干
扰。这种信念是那么根深蒂固,因此,人们从来没有想到需要把
这样一种提法明确地加以说明,并且总是把所有有关的问题都当
作纯技术性的困难来处理。但是,20世纪开始以来所积累的许
多新的实验事实,却不断促使物理学家作出结论说,真实的情况
确实要复杂得多,并且,在自然界中存在着一个确定的互相作用
下限,这个下限是永远不能超越的。就我们日常生活中所熟悉的
各种过程而论,这个天然的精确度极限小到可以忽略不计,但是,
当我们所要处理的是在原子或分子这类极微小的力学系统中发生
的过程时,这个极限便变得非常重要了。
1900年,德国物理学家普朗克在从理论上研究物体与辐
射之间的平衡条件时,得出了一个令人惊讶的结论说,这种平衡
是根本不可能达到的,除非我们假设物质与辐射之间的相互作用
并不像我们通常设想的那样连续,而是通过一系列不连续的‘冲
击’来实现的,在每一次这样的基本相互作用中,都有一定量的
能量从物质转移给辐射或从辐射转移给物质。为了达到所要求的
平衡,并且使理论同实验事实相一致,必须在每次冲击所转移的
能量与那个导致能量转移的过程的频率(周期的倒数)之间,引
入一个简单的数学比例关系式。
这样一来,普朗克不得不作出结论说,在用符号h代表这个
比例常数时,每次冲击所转移的最小能量(即所谓量子)可由下
式算出:

E=hν(13)

式中ν是辐射的频率。常数h的数量值等于6.547×10…34焦·秒,
它通常被称为普朗克常数或量子常数。量子常数的数量值极其微
小,这就是我们在日常生活中通常观察不到量子现象的原因。
普朗克这种想法的进一步发展应该归功于爱因斯坦,他在几
年后得出了一个结论说,辐射不仅仅在发射时才分成一个个大小
有限的、分立的部分,并且永远以这样的方式存在,也就是说,
它永远是由许多分立的“能包”组成的。爱因斯但把这种能包称
为光量子。
只要光量子在运动着,那么,它们除了具有能量hν以外,
还具有一定的动量,根据相对论性力学,这个动量应该等于它们
的能量除以光速c。正如光的频率同波长λ之间存在着ν=c/λ
的关系一样,光量子的动量p同它的频率(或波长)也存在着下
面的关系:

p=hν/c=h/λ (14)

由于运动物体在碰撞中所产生的力学作用取决于它的动量,
我们必须作出结论说,光量子的作用随着波长的减小而增大。
最出色地证明存在光量子和光量子具有能量和动量这个想法
的实验事实,是美国物理学家康普顿的研究所提供的。他在研究
光量子和电子的碰撞时,得到了这样一个结果:因受光线的作用
而开始运动的电子的表现,正好同电子被一个具有式(13)和(14)
所给出的能量和动量的粒子击中时相同。光量子本身在同电子碰
撞以后,也显示出发生了某些变化(它们的频率改变了),这也
同量子论的预言非常相符。
我们目前可以说,就辐射同物质的相互作用而论,辐射的量
子性质已经是完全确定下来的实验事实了。
量子概念的更进一步的发展归功于著名的丹麦物理学家N.
玻尔,他在1913年最早提出了这样一个想法:任何一个力学系统
内部的运动只可能具有一套分立的能量值,并且,运动只能通过
有限大小的跳跃而改变其状态,在每一次这样的跃迁中,都会辐
射(或吸收)一定量的能量(等于那两个容许能态之间的能量差)。
他的这种想法是受到当时对原子光谱的观察结果的启发:当原子
中的电子发出辐射时,最后得到的光谱并不是连续的,而只含有
某些确定的频率——线光谱。换句话说,根据等式(13),所发
出的辐射只能具有某些确定的能量值。如果玻尔关于发射体(现
在是原子中的电子)的容许能态的假说是正确的,那么,出现线
光谱的原因就很容易理解了。
确定力学系统各种可能状态的数学法则要比辐射的公式复杂
得多,所以我不想在这里讨论。简单地说吧,如果想圆满地描述
像电子这样的粒子的运动,就必须认为它们具有波动性。这样做
的必要性是法国物理学家德布罗意根据他自己对原子结构的理论
研究最先提出的。他认识到,处在有限空间中的波,不管是风琴
管里的声波,还是小提琴琴弦的振动,都只能具有某些确定的频
率或波长。这些波必须“适应”那个有限空间的大小,并且产生
我们所谓的“驻波”。德布罗意主张说,如果原子中的电子具有
波动性,那么,由于电子的波受到限制(限制在原子核的旁边),
它的波长也只能取驻波所能具有的分立值。不仅如此,如果用一
个类似于等式(14)的方程把上述的波长同电子的动量联系起来,


 p粒子=h/λ(15)

那么,其结果必定是电子的动量(因而连其能量)也只能取某些
确定的容许值。当然,这就非常清楚地解释了为什么原子中的电
子具有分立的能级,以及为什么它们发出的辐射会产生线光谱了。
在接下来的许多年里,物质粒子运动的波动性已经被无数实
验牢固地证实了。这些实验表明,电子束在通过小孔时所发生的
衍射,以及像分子这样比较大。比较复杂的粒子所发生的干涉,
都属于这类现象。当然,从古典的运动概念的观点来看,对物质
粒子所观察到的这种波动性是绝对无法理解的。所以,德布罗意
本人不得不采纳一种当时看来十分奇怪的观点,认为粒子总是由
某种波“伴随”着,可以说,就是这种波在“指挥”着粒子的运
动。
由于常数h的值极小,物质粒子的波长是异常小的,即使对
于最轻的基本粒子——电子——也是如此。当辐射的波长比它可
能通过的孔径小得多时,衍射效应是微不足道的,这时辐射会完
全以正常的方式通过它。这正是足球可以不受衍射影响改变方向
而直接通过两个门柱之间的间隙射入球门的原因。只有当运动发
生在原子和分子内部那样小的区域中时,粒子的波动性才具有重
要意义,这时它对我们认识物质的内在结构起着决定性的作用。
关于这类微小的力学系统具有一套分立能态的一个最直接的
证明,是弗兰克和赫兹的实验提供的。他们在用带有不同能量的
电子轰击原子时发现,只有当入射电子的能量达到某些分立值的
时候,原子的能态才会发生明确的变化。如果电子的能量低于某
一极限,在原子中就观察不到任何效应,因为这时每一个电子所
携带的能量都不足以把原子从第一个量子态提高到第二个量子态。
因此,在发展量子论这个

返回目录 上一页 下一页 回到顶部 0 0

你可能喜欢的