物理世界奇遇记-第30部分
按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
时空 这是一个四维连续统,正如狭义相对论所描述,它是
由空间和时间结合而成的。
光谱 显示出电磁辐射的各个组成波长的图形。由于原子中
的电子只能具有某些特定的能量值,所以,电子在从一个能级跃
迁到另一个能级时所发出的辐射,便显示为由不连续的波长所表
征的谱线——这些波长对应于初态与未态之间的能量差。
分光镜 一种根据其组成波长来显示电磁辐射的仪器。
光速(c) 光(以及所有没有质量的粒子)在真空中以
300000公里每秒的速度运动。按照狭义相对论,对于所有
处在匀速相对运动中的观察者来说,这个速度都是相同的(但是,
当存在着万有引力场或者光通过物质运动时,光速可以偏离上述
值)。
自旋 某些粒子所具有的内禀角动量。
对称(性)自发破缺 当物理系统朝向较低能态运动时,其
基本对称性发生破损的情形。例如,就空间中的方向而言,液态
水是对称的,但当它冷却而形成冰时,有些方向便被优先选为晶
轴的排列方向。但是,这些方向井没有什么深层的意义,因为它
们只是随机地。或者说是自发地被选定的。与此相似,人们认为
电磁力和弱力具有一种只有在高能情况下才变得比通常条件下更
为明显的对称性。
标准模型(标准理论) 正如本书所说和人们所公认的,整
个有关夸克和轻子及它们之间的作用力的理论,已被看做我们目
前对高能物理学认识得最彻底的理论。
定态宇宙理论 有一段时期很流行的一种与大爆炸理论相对
抗的宇宙理论。这个理论认为,如果在任何空间区域内有一些星
系消失,那么,在它们原来的位置上就会自发地产生新的物质。
这些新物质会聚合在一起而形成新的恒星和星系,而后者又会移
向远方而消失,这样一来,宇宙就会永远保持不变的普遍性质。
这个理论目前已面临被抛弃的危险,因为所有的证据都有利于证
明大爆炸的存在。
奇异数(S) 这个量子数说明有多少个夸克带有奇异味。
强核力 在强子间占有统治地位的作用力。例如,核子结合
成原子核就是这种力在起作用。把分子中的各个原子结合在一起
的力,是每一个原子中作用于电子与原子核之间的静电力的“泄
漏”,与此相似,现在人们把强核力看做是作用于夸克之间并使
它们组成核子的更为基本的色力的“泄漏”。
超新星 质量非常大的恒星发生爆炸性的崩解,有时这种崩
解会导致其内部核心发生坍缩而形成黑洞。
超弦 最近有一种想法认为,夸克和轻子并不像普遍设想的
那样是点状的实体,而是由一些极其细微的振动弦组成的。
超对称性 按照这种想法,传递作用力的被交换粒子(如胶
子和光子)和进行交换的粒子(如夸克和轻子),其性质和作用
并没有什么不同,而过去人们普遍认为它们是不同的。
SU(3)表象 由群论(数学中专门描述对称性的分支学
科)产生的一种特征表示法。已经发现,这种表示法与强子的分
类法等效,能分出由关系非常密切的粒子组成的八重态和十重态。
这种对称性表示法反映了强子的基本夸克结构。
对称性 由于一个圆在转动时不会发生变化,所以我们说圆
是一种对称的图形。与此相似,如果某个物理理论在进行运作时
保持不变,我们就说这个理论具有对称性。
同步回旋加速器 这种粒子加速器能同步地调整加速电力和
导向磁力的强度,使它们同被加速粒子不断变化的性质相匹配。
τ轻子 属于第三代的带电轻子。
时延 按照爱因斯坦的狭义相对论,相对于某个观察者运动
的物体(如宇宙飞船或放射性粒子),会表现得好像它的时间过
程变慢了一样。
顶数(t) 这个量子数说明所出现的夸克有多少个带有顶
味。
统一理论 这种理论企图把各种不同的力解释成一个公有的
力的不同表现形式。例如,静电力和磁力只不过是电磁力的两种
不同的表现,而电磁力又同弱力结合而产生电弱力。大统一理论
则力图把电弱力和强力统一起来。人们还希望最后能达到进一步
的统一,即把万有引力也结合到这个理论中来。
价电子 原子外围被束缚得不太紧的电子,它们能局部受到
邻近原子的原子核的吸引,从而产生把数个原子束缚在一起成为
分子的结合力。
波函数(Ψ) 量子理论中用来描述粒子运动的一种数学表
式。它用于以粒子的其他属性的特定值去计算在给定的时间、给
定的空间区域内找到该粒子的可能性。
波长 在一个波列中相邻两波峰或相邻两波谷之间的距离。
W粒子和Z粒子(W,Z) 在强子和轻子之间传递弱力的
粒子。W粒子带有电荷,而Z粒子则是电中性的。
弱力 自然界中的基本作用力之一,举例来说,它是某几种
放射性核衰变的起因,它通过W粒子和Z粒子的交换而在强子和
轻子之间传递。
白矮星 像太阳这样的恒星在结束其红巨星的发展阶段之后,
它的外层就会脱落,暴露出其白热的内部核心。到一定的时候,
它便冷却,变成很冷的岩石。
调射线 波长很短的穿透性电磁辐射。
零点能 一个物理系统所能具有的最低能量。按照量子理论,
这个能量应该是有限的,即不等于零。举例来说,原子中的电子
在空间中占有一个有限的位置。对于位置的这种局部认知,排除
了精确知道电子动量的可能性(由于海森伯测不准关系式),这
就意味着我们无法认定电子的动量(因而连它的能量)精确地等
于零。