策略思维-第6部分
按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
于是他们坐车出发,顺利到达酒店。司机要求他们支付以色列币2500谢克尔(相当于2。75美元)。谁知道什么样的价钱才是合理的呢?因为在以色列,讨价还价非常普遍,所以他们还价2200 谢克尔。司机生气了。他嚷嚷着说从那边来到酒店,这点钱根本不够用。他不等对方说话就用自动装置锁死了全部车门,按照原路没命地开车往回走,一路上完全没把交通灯和行人放在心上。两位经济学家是不是被绑架到贝鲁特去了?不是。司机开车回到出发点,非常粗暴地把他们扔出车外,一边大叫:“现在你们自己去看看你们那2200 谢克尔能走多远吧!〃
他们又找了一辆出租车。这名司机开始打表,跳到2200谢克尔的时候,他们也回到了酒店。
毫无疑问,花这么多时间折腾对于两位经济学家来说还值不到300谢克尔。另一方面,这个故事却很有价值。它描述了跟那些没有读过我们这本书的人讨价还价可能存在什么样的危险。更普遍的情况是,我们不能忽略自尊和失去理性这两种要素。有时候,假如总共只不过要多花20美分,更明智的选择可能是到达目的地之后乖乖付钱。①
① 两位亲身参与了这一幕惊险闹剧,并且侥幸活着回来讲这个故事的经济学家分别是耶普大学的约翰·吉纳科普洛斯(John Geanakoplos)以及本书作者之一巴里· 奈尔伯夫。
这个故事还有第二个教训。设想一下,假如两位经济学家是在下车之后再来讨论价钱问题,他们的讨价还价地位该有多大的改善。(当然了,若是租一辆出租车,思路应该与此完全相反。假如你在上车之前告诉司机你要到哪里去,那么,你很有可能眼巴巴看着出租车弃你而去,另找更好的主顾。记住,你最好先上车,然后告诉司机你要到哪里去。)
11.未来的模样
前面的例子让我们初步领略了指导策略决策的原理。我们可以借助这些故事的寓意将这些原理进行归纳。
妙手传说告诉我们,在策略里,就跟在物理学当中一样,“我们所采取的每一个行动,都会引发一个反行动”。我们并非生活在一个真空世界,也不是在一个真空世界里举止行事。因此,我们不可以假定说,虽然我们改变了自己的行为,其他事情还会保持原样。
戴高乐在谈判桌上获得成功,这表明“只有卡住的轮子才能得到润滑油”① 。不过,坚持顽固强硬并非总是轻而易举,尤其在你遇到一个同样顽固强硬的对手而不得不表现得比对方更加顽固强硬的时候更难做到。
① 有些读者可能还听过这个成语的另一个版本,说的是“咯吱作响的车轮才能得到润滑油”,意思是一样的,因为卡住的轮子需要更多的润滑油。当然,有时候它会被换掉。
古拉格的笑话以及给猫拴铃档的故事刻画了需要协调和个人牺牲才能有所收获的事情做起来可能具有的难度。贸易政策的故事则强调了逐个解决问题的危险性。在技术竞赛当中,就跟在帆船比赛中差不多,追踪而来的新公司总是倾向于采用更加具有创新性的策略,而龙头老大们则愿意模仿跟在自己后面的公司。
网球和税务审计的故事指出,策略的优势在于不可预测性。不可预测的行为可能还有一个好处,就是使人生变得更加有趣了。
我们当然可以再讲几个故事,借助这些故事再讲一些道理,不过,这不是系统思考策略博弈的最佳方法。从一个不同角度研究同一个主题会更见效。我们每次讲一个原理,比如承诺、合作和多管齐下。在每一个章节,我们还会介绍一些以这个主题为核心的故事,直到说清整个原理为止。然后,读者可以在每章后面所附“案例分析”中运用这个原理。
12 .案例分析之一:红色算我赢,黑色算你输
虽然我们两位作者也许永远没有机会担当美洲杯帆船赛的船长,但其中一位却遇到了一个非常接近的情形。巴里毕业的时候,为了庆祝一番,参加了剑桥大学的五月舞会(这是英国版本的大学正式舞会)。庆祝活动的一部分包括在一个赌场下注。每人都得到相当于20美元的筹码,截至舞会结束之时,收获最大的一位将免费获得下一年度舞会的人场券。到了准备最后一轮轮盘赌的时候,纯粹是出于一个令人愉快的巧合,巴里手里已经有了相当于700美元的筹码,独占鳌头,第二位是一名拥有300美元筹码的英国女子。其他参加者实际上已经被淘汰出局。就在最后一次下注之前,那个女子提出分享下一年舞会的人场券,但是巴里拒绝了。他占有那么大的优势,怎么可能满足于得到一半的奖赏呢?
为了帮助大家更好地理解接下去的策略行动,我们先来简单介绍一下轮盘赌的规则。轮盘赌的输赢取决于轮盘停止转动时小球落在什么地方。典型情况是,轮盘上刻有从0到36的37个格子。假如小球落在0处,就算庄家赢了。玩轮盘赌最可靠的玩法就是赌小球落在偶数还是奇数格子(分别用黑色和红色表示)。这种玩法的赔率是一赔一,比如一美元赌注变成两美元,不过取胜的机会只有18/37 。在这种情况下,即便那名英国女子把全部筹码押上,也不可能稳操胜券;因此,她被迫选择一种风险更大的玩法。她把全部筹码押在小球落在3的倍数上。这种玩法的赔率是二赔一(假如她赢了,她的300美元就会变成900美元); 但取胜的机会只有12/37 。现在,那名女子把她的筹码摆上桌面,表示她已经下注,不能反悔。那么,巴里应该怎么办?
案例讨论
巴里应该模仿那名女子的做法,同样把300美元筹码押在小球落在3的倍数上。这么做可以确保他领先对方400美元,最终赢得那张入场券:假如他们都输了这一轮,巴里将以400:0取胜;假如他们都赢了,巴里将以1300:900 取胜。那名女子根本没有其他选择。即使她不赌这一轮,她还是会输,因为巴里会和她一样退出这一轮,照样取胜。①
她的惟一希望在于巴里先赌。假如巴里先在黑色下注200美元,她应该怎么做?她应该把她的300美元押在红色。把她的筹码押在黑色对她没有半点好处,因为只有巴里取胜,她才能取胜(而她将是亚军,只有600美元,排在巴里的900美元后面)。自己取胜而巴里失败就是她惟一的反败为胜的希望所在,这就意味着她应该在红色下注。
这个故事的策略寓意与马丁·路德和戴高乐的故事恰恰相反。在这个关于轮盘赌的故事里,先行者处于不利地位。由于那名女子先下注,巴里可以选择一个确保胜利的策略。假如巴里先下注,那名女子就可以选择一个具有同样取胜机会的赌注。这里需要说明的是,在博弈游戏里,抢占先机、率先出手并不总是好事。因为这么做会暴露你的行动,其他参与者可以利用这一点占你的便宜。第二个出手可能使你处于更有利的策略地位。
① 如果一定要说实话,这是巴里事后懊悔自己没有采取的策略。当时是凌晨3点,他已经喝了太多香槟,再也没有办法保持头脑清醒了。结果,他把200美元押在偶数上,心里嘀咕他输掉冠军宝座的惟一可能性就是这一轮他输并且她赢,而这种可能性的发生几率只有1:5 ,所以形势对他非常有利。当然,几率为1:5 的事情有时也会发生,这里讲的就是其中的一个例子:她赢了。
第2章 准备接招
1 .轮到你了,查理·布朗
连环漫画《花生》里有一个反复出现的主题,说的是露西(Lucy)将一个橄榄球按住,竖在地上,招呼查理·布朗(Charlie Brown)过去踢那个球。不过,每次到了最后一刻,露西总要拿走橄榄球,查理·布朗因为一脚踢空,仰天跌一跤,心怀不轨的露西就会高兴得不得了(如图2…1所示)。
任何人都会劝告查理·布朗不要上露西的当。即便露西去年(以及前年和再前一年)没有在他身上玩过这个花招,他也应该从其他事情了解她的性格,完全有可能预见她会采取什么行动。
就在查理盘算要不要接受露西的邀请跑去踢球的时候,她的行动还没有发生。不过,单凭她的行动还没有发生这一点,并不意味着查理就应该把这个行动看做是不确定性的。他应该知道,在两种可能的结果——让他踢中那个球以及让他仰天跌一跤——当中,露西倾向于后者。因此,他应该预见到,一旦时机到了,她就会拿走橄榄球。从逻辑推理得出的露西会让他踢中那个球的可能性实际上已经毫无影响。对这么一种可能性仍然抱有信心,套用约翰逊(Johnson)博士描述的再婚的特征,是希望压倒经验的胜利。查理不应该那样想,而应预见到接受露西的邀请最终会让自己仰天跌一跤。他应该拒绝露西的邀请。
2 .两种策略互动
策略博弈的精髓在于参与者的决策相互依存。这种相互影响或互动通过两种方式体现出来。第一种方式是相继发生,比如查理·布朗的故事。参与者轮流出招。每个参与者在轮到自己的时候,必须展望一下他的这一步行动将会给其他人以后的行动造成什么影响,反过来又会对自己以后的行动造成什么影响。
第二种互动方式是同时发生,比如第1章囚徒困境故事的情节。参与者同时出招,完全不理会其他人刚刚走了哪一步。不过,每个人必须心中有数,知道这个博弈游戏存在其他参与者,而这些人反过来也非常清楚这一点,如此类推。因此,每个人必须设想一下若是自己处在其他人的位置,会做出什么反应,从而预计自己这一步会带来什么结果。他选择的最佳策略也是这一全盘考虑的一个组成部分。
一旦你发现自己正在玩一个策略博弈,你必须确定其中的互动究竟是相继发生的还是同时发生的。有些博弈,比如橄榄球,同时具备上述两种互动元素。这时候你必须确保自己的策略符合整个环境的要求。在这一章,我们将粗略介绍一些有助于你玩相继发生的互动的博弈的概念和规则;而同时发生的互动的博弈将是第3章的主题。我们从非常简单、有时候是设计出来的例子开始,比如查理·布朗的故事。我们有意这么做,毕竟,这些故事本身并不十分重要,而正确的策略通常也是通过简单的直觉就能发现的,这么一来,可以更加清晰地凸显其中蕴涵的概念。我们用到的例子会在案例分析以及以后的章节里变得越来越接近现实生活,也越来越复杂。
3 .策略的第一法则
相继出招的博弈有一个总的原则,就是每一个参与者必须预计其他参与者接下来会有什么反应,据此盘算自己的最佳招数。这一点非常重要,值得确立为策略行为的一个基本法则。
法则1:向前展望,倒后推理。
展望你的最初决策最后可能导致什么结果,利用这个信息确定自己的最佳选择。
在查理·布朗的故事里,做到这点对所有人来说应该都是不费吹灰之力的,只有查理·布朗除外。他只有两个选择,其中一个导致露西在两个可能的招数之间选择了一个。大多数策略情况都会涉及一系列更长的决策结果,每个结果都有几种选择,单是口头上进行推理实在是无法表述清楚。要想成功地运用这个向前展望、倒后推理的法则,我们需要一个更好的视觉辅助工具。一个涵盖了博弈当中全部选择的“树状图”就是这么一个工具。现在我们就来演示一下怎么使用这些树。
4 .决策树与博弈树
一系列需要向前展望、倒后推理的决策,甚至有可能出现在一个孤立的决策者面前,而这个人并非置身于一个有其他人参加的策略博弈中。对于走在黄树林里的罗伯特·弗罗斯特(Robert Frost) :
两条路在树林里分岔,而我
我选择人迹罕至的那一条,
从此一切变了样。'1'
我们可以画出这样一幅示意图(如图2…2 所示)。
许多人走的路
黄树林
人迹罕至的路
到此未必就不用再选择了。每一条路后面可能还会有分岔,图2…2 相应也会变得越来越复杂。以下就是我们亲身经历的一个例子。
从普林斯顿到纽约旅行会遇到几次选择。第一个决策点是选择旅行的方式:乘公共汽车、乘火车还是自己开车。选择自己开车的人接下来就要选择走费拉扎诺·奈罗斯桥、荷兰隧道、林肯隧道还是乔治·华盛顿桥。选择搭乘火车者必须决定是在纽瓦克(Newark)换乘PATH列车〃还是直达纽约宾夕法尼亚车站。等到进入纽约,搭乘火车或公共汽车的人还必须决定怎样抵达自己的最后目的地,是步行、乘地铁(是本地地铁还是高速地铁)、乘公共汽车还是乘出租车。最佳决策取决于多种因素,包括价格、速度、难以避免的交通堵塞、纽约城里的最终目的地所在以及对泽西收费公路上的空气污染的厌恶程度,等等。
图2…3 描述了你在每一个岔道口面临的选择,看上去就像一棵枝叶繁茂的大树,所以称为“决策树”。如何正确使用这样一张图或这么一棵树呢?绝对不是选择第一个岔道口看上去最好的分枝,然后等到下一个岔道口出现再去思考接下来应该怎么办;相反,你应该预计到以后将面临的选择,利用这些信息倒过头来确定前面几个岔道口你应该怎么决断。举个例子,假设你要去华尔街,乘PATH火车就好于开车,因为这条铁路从纽瓦克直达华尔街。
公共汽车 市内交通
在纽瓦克换乘PATH列车 市内交通
普林斯顿 火车
直达宾夕法尼亚车站 市内交通
费拉扎诺·奈罗斯桥
小汽车 荷兰隧道
林肯隧道
乔治·华盛顿桥
我们可以通过一棵这样的树描述一个策略博弈当中的选择,不过,现在出现了一个新的元素。我们遇到一个有两个人或更多人参与的博弈。沿着这棵树出发,后面许多分枝可能是几个参与者轮流决策。每个参与者在前一个分枝做决策时必须向前展望,而且考察的范围不应仅局限于他自己