九章算术-第10部分
按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
四。
术曰:置钱,锥行衰。
〔按:此术“锥行”者,谓如立锥:初一、次二、次三、次四、次五,各均,
为一列者也。〕
并上二人为九,并下三人为六。六少于九,三。
〔数不得等,但以五、四、三、二、一为率也。〕
以三均加焉,副并为法。以所分钱乘未并者,各自为实。实如法得一钱。
〔此问者,令上二人与下三人等,上、下部差一人,其差三。均加上部,则
得二三;均加下部,则得三三。下部犹差一人,差得三,以通于本率,即上、下
部等也。于今有术,副并为所有率,未并者各为所求率,五钱为所有数,而今有
之,即得等耳。假令七人分七钱,欲令上二人与下五人等,则上、下部差三人。
并上部为十三,下部为十五。下多上少,下不足减上。当以上、下部列差而后均
减,乃合所问耳。此可仿下术:令上二人分二钱半为上率,令下三人分二钱半为
下率。上、下二率以少减多,余为实。置二人、三人,各半之,减五人,余为法。
实如法得一钱,即衰相去也。下衰率六分之五者,丁所得钱数也。〕
今有竹九节,下三节容四升,上四节容三升。问中间二节欲均容,各多少?
答曰:下初一升六十六分升之二十九。次一升六十六分升之二十二。次一升六十
六分升之一十五。次一升六十六分升之八。次一升六十六分升之一。次六十六分
升之六十。次六十六分升之五十三。次六十六分升之四十六。次六十六分升之三
十九。
术曰:以下三节分四升为下率,以上四节分三升为上率。
〔此二率者,各其平率也。〕
上、下率以少减多,余为实。
〔按:此上、下节各分所容为率者,各其平率。上、下以少减多者,余为中
间五节半之凡差,故以为实也。〕
置四节、三节,各半之,以减九节,余为法。实如法得一升。即衰相去也。
〔按此术法者,上下节所容已定之节,中间相去节数也;实者,中间五节半
之凡差也。故实如法而一,则每节之差也。〕
下率一升少半升者,下第二节容也。
〔一升少半升者,下三节通分四升之平率。平率即为中分节之容也。〕
今有凫起南海,七日至北海;雁起北海,九日至南海。今凫、雁俱起,问何
日相逢?答曰:三日十六分日之十五。
术曰:并日数为法,日数相乘为实,实如法得一日。
〔按:此术置凫七日一至,雁九日一至。齐其至,同其日,定六十三日凫九
至,雁七至。今凫、雁俱起而问相逢者,是为共至。并齐以除同,即得相逢日。
故“并日数为法”者,并齐之意;“日数相乘为实”者,犹以同为实也。一曰:
凫飞日行七分至之一,雁飞日行九分至之一。齐而同之,凫飞定日行六十三分至
之九,雁飞定日行六十三分至之七。是为南北海相去六十三分,凫日行九分,雁
日行七分也。并凫、雁一日所行,以除南北相去,而得相逢日也。〕
今有甲发长安,五日至齐;乙发齐,七日至长安。今乙发已先二日,甲乃发
长安,问几何日相逢?答曰:二日十二分日之一。
术曰:并五日、七日,以为法。
〔按:此术“并五日、七日为法”者,犹并齐为法。置甲五日一至,乙七日
一至。齐而同之,定三十五日甲七至,乙五至。并之为十二至者,用三十五日也。
谓甲、乙与发之率耳。然则日化为至,当除日,故以为法也。〕
以乙先发二日减七日,
〔“减七日”者,言甲、乙俱发,今以发为始发之端,于本道里则余分也。〕
也。
余,以乘甲日数为实。
〔七者,长安去齐之率也;五者,后发相去之率也。今问后发,故舍七用五。
以乘甲五日,为二十五日。言甲七至,乙五至,更相去,用此二十五日也。
实如法得一日。
〔一日甲行五分至之一,乙行七分至之一。齐而同之,甲定日行三十五分至
之七,乙定日行三十五分至之五。是为齐去长安三十五分,甲日行七分,乙日行
五分也。今乙先行发二日,已行十分,余,相去二十五分。故减乙二日,余,令
相乘,为二十五分。〕
今有一人一日为牝瓦三十八枚,一人一日为牡瓦七十六枚。今令一人一日作
瓦,牝、牡相半,问成瓦几何?答曰:二十五枚少半枚。
术曰:并牝、牡为法,牝、牡相乘为实,实如法得一枚。
〔此意亦与凫雁同术。牝、牡瓦相并,犹如凫、雁日飞相并也。按:此术
“并牝、牡为法”者,并齐之意;“牝、牡相乘为实”者,犹以同为实也。故实
如法,即得也。〕
今有一人一日矫矢五十,一人一日羽矢三十,一人一日摐矢十五。今令一人
一日自矫、羽、摐,问成矢几何?答曰:八矢少半矢。
术曰:矫矢五十,用徒一人;羽矢五十,用徒一人太半人;摐矢五十,用徒
三人少半人。并之,得六人,以为法。以五十矢为实。实如法得一矢。
〔按:此术言成矢五十,用徒六人,一日工也。此同工其作,犹凫、雁共至
之类,亦以同为实,并齐为法。可令矢互乘一人为齐,矢相乘为同。今先令同于
五十矢。矢同则徒齐,其归一也。——以此术为凫雁者,当雁飞九日而一至,凫
飞九日而一至七分至之二。并之,得二至七分至之二,以为法。以九日为实。—
—实如法而一,得一人日成矢之数也。〕
今有假田,初假之岁三亩一钱,明年四亩一钱,后年五亩一钱。凡三岁得一
百。问田几何?答曰:一顷二十七亩四十七分亩之三十一。
术曰:置亩数及钱数。令亩数互乘钱数,并,以为法。亩数相乘,又以百钱
乘之,为实。实如法得一亩。
〔按:此术令亩互乘钱者,齐其钱;亩数相乘者,同其亩。同于六十,则初
假之岁得钱二十,明年得钱十五,后年得钱十二也。凡三岁得钱一百,为所有数,
同亩为所求率,四十七钱为所有率,今有之,即得也。齐其钱,同其亩,亦如凫
雁术也。于今有术,百钱为所有数,同亩为所求率,并齐为所有率。
淳风等按:假田六十亩,初岁得钱二十,明年得钱十五,后年得钱十二。
并之,得钱四十七。是为得田六十亩,三岁所假。于今有术,百钱为所有数,六
十亩为所求率,四十七为所有率,而今有之,即合问也。〕
今有程耕,一人一日发七亩,一人一日耕三亩,一人一日耰种五亩。今令一
人一日自发、耕、耰种之,问治田几何?答曰:一亩一百一十四步七十一分步之
六十六。
术曰:置发、耕、耰亩数,令互乘人数,并,以为法。亩数相乘为实。实如
法得一亩。
〔此犹凫雁术也。
淳风等按:此术亦发、耕、耰种亩数互乘人者,齐其人;亩数相乘者,同
其亩。故并齐为法,以同为实。计田一百五亩,发用十五人,耕用三十五人,种
用二十一人。并之,得七十一工。治得一百五亩,故以为实。而一人一日所治,
故以人数为法除之,即得也。〕
今有池,五渠注之。其一渠开之,少半日一满,次一日一满,次二日半一满,
次三日一满,次五日一满。今皆决之,问几何日满池?答曰:七十四分日之十五。
术曰:各置渠一日满池之数,并,以为法。
〔按:此术其一渠少半日满者,是一日三满也;次一日一满;次二日半满者,
是一日五分满之二也;次三日满者,是一日三分满之一也;次五日满者,是一日
五分满之一也。并之,得四满十五分满之十四也。〕
以一日为实,实如法得一日。
〔此犹矫矢之术也。先令同于一日,日同则满齐。自凫雁至此,其为同齐有
二术焉,可随率宜也。〕
其一术:各置日数及满数。
〔其一渠少半日满者,是一日三满也;次一日一满;次二日半满者,是五日
二满;次三日一满,次五日一满。此谓之列置日数及满数也。〕
令日互相乘满,并,以为法。日数相乘为实。实如法得一日。
〔亦如凫雁术也。按:此其一渠少半日满池者,是一日三满池也;次一日一
满;次二日半满者,是五日再满;次三日一满;次五日一满。此谓列置日数于右
行,及满数于左行。以日互乘满者,齐其满;日数相乘者,同其日。满齐而日同,
故并齐以除同,即得也。〕
今有人持米出三关,外关三而取一,中关五而取一,内关七而取一,余米五
斗。问本持米几何?答曰:十斗九升八分升之三。
术曰:置米五斗,以所税者三之,五之,七之,为实。以余不税者二、四、
六相互乘为法。实如法得一斗。
〔此亦重今有也。所税者,谓今所当税之。定三、五、七皆为所求率,二、
四、六皆为所有率。置今有余米五斗,以七乘之,六而一,即内关未税之本米也。
又以五乘之,四而一,即中关未税之本米也。又以三乘之,二而一,即外关未税
之本米也。今从末求本,不问中间,故令中率转相乘而同之,亦如络丝术。
又一术:外关三而取一,则其余本米三分之二也。求外关所税之余,则当置
一,二分乘之,三而一。欲知中关,以四乘之,五而一。欲知内关,以六乘之,
七而一。凡余分者,乘其母、子:以三、五、七相乘得一百五,为分母;二、四、
六相乘,得四十八,为分子。约而言之,则是余米于本所持三十五分之十六也。
于今有术,余米五斗为所有数,分母三十五为所求率,分子十六为所有率也。〕
今有人持金出五关,前关二而税一,次关三而税一,次关四而税一,次关五
而税一,次关六而税一。并五关所税,适重一斤。问本持金几何?答曰:一斤三
两四铢五分铢之四。
术曰:置一斤,通所税者以乘之,为实。亦通其不税者,以减所通,余为法。
实如法得一斤。
〔此意犹上术也。“置一斤,通所税者”,谓令二、三、四、五、六相乘,
为分母,七百二十也。“通其所不税者”,谓令所税之余一、二、三、四、五相
乘,为分子,一百二十也。约而言之,是为余金于本所持六分之一也。以子减母,
凡五关所税六分之五也。于今有术,所税一斤为所有数,分母六为所求率,分子
五为所有率。此亦重今有之义。又虽各有率,不问中间,故令中率转相乘而连除
之,即得也。置一以为持金之本率,以税率乘之、除之,则其率亦成积分也。〕
卷七
○盈不足(以御隐杂互见)
今有共买物,人出八,盈三;人出七,不足四。问人数、物价各几何?答曰:
七人。物价五十三。
今有共买鸡,人出九,盈一十一;人出六,不足十六。问人数、鸡价各几何?
答曰:九人。鸡价七十。
今有共买琎,人出半,盈四;人出少半,不足三。问人数、琎价各几何?答
曰:四十二人。琎价十七。
〔注云“若两设有分者,齐其子,同其母”,此问两设俱见零分,故齐其子,
同其母。又云“令下维乘上。讫,以同约之”,不可约,故以乘,同之。〕
今有共买牛,七家共出一百九十,不足三百三十;九家共出二百七十,盈三
十。问家数、牛价各几何?答曰:一百二十六家。牛价三千七百五十。
〔按:此术并盈不足者,为众家之差,故以为实。置所出率,各以家数除之,
各得一家所出率。以少减多者,得一家之差。以除,即家数。以出率乘之,减盈,
故得牛价也。〕
术曰:置所出率,盈不足各居其下。令维乘所出率,并,以为实。并盈、不
足,为法。实如法而一。
〔按:盈者,谓朓;不足者,谓之朒;所出率谓之假令。盈、朒维乘两
设者,欲为同齐之意。据“共买物,人出八,盈三;人出七,不足四”,齐其假
令,同其盈、朒,盈、朒俱十二。通计齐则不盈不朒之正数,故可并之为
实,并盈、不足为法。齐之三十二者,是四假令,有盈十二;齐之二十一者,是
三假令,亦朒十二;并七假令合为一实,故并三、四为法。〕
有分者通之。
〔若两设有分者,齐其子,同其母。令下维乘上,讫,以同约之。〕
盈不足相与同其买物者,置所出率,以少减多,余,以约法、实。实为物价,
法为人数。
〔“所出率以少减多”者,余,谓之设差,以为少设。则并盈、朒,是为
定实。故以少设约定实,则法,为人数;适足之实故为物价。盈朒当与少设相
通。不可遍约,亦当分母乘,设差为约法、实。〕
其一术曰:并盈、不足为实。以所出率,以少减多,余为法。实如法得一人。
以所出率乘之,减盈、增不足,即物价。
〔此术意谓盈不足为众人之差。以所出率以少减多,余为一人之差。以一人
之差约众人之差,故得人数也。〕
今有共买金,人出四百,盈三千四百;人出三百,盈一百。问人数、金价各
几何?答曰:三十三人。金价九千八百。
今有共买羊,人出五,不足四十五;人出七,不足三。问人数、羊价各几何?
答曰:二十一人。羊价一百五十。
术曰:置所出率,盈、不足各居其下。令维乘所出率,以少减多,余为实。
两盈、两不足以少减多,余为法。实如法而一。有分者,通之。两盈两不足相与
同其买物者,置所出率,以少减多,余,以约法、实。实为物价,法为人数。
〔按:此术两不足者,两设皆不足于正数。其所以变化,犹两盈。而或有势
同而情违者。当其为实,俱令不足维乘相减,则遗其所不足焉。故其余所以为实
者,无朒数以损焉。盖出而有余,两盈。两设皆逾于正数。假令与共买物,人
出八,盈三;人出九,盈十。齐其假令,同其两盈。两盈俱三十。举齐则兼去。