八喜电子书 > 文学名著电子书 > 九章算术 >

第12部分

九章算术-第12部分

小说: 九章算术 字数: 每页4000字

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!




日自半。问几何日相逢?各穿几何?答曰:二日一十七分日之二。大鼠穿三尺四

寸十七分寸之一十二,小鼠穿一尺五寸十七分寸之五。

术曰:假令二日,不足五寸;令之三日,有余三尺七寸半。

〔大鼠日倍,二日合穿三尺;小鼠日自半,合穿一尺五寸;并大鼠所穿,合

四尺五寸。课于垣厚五尺,是为不足五寸。令之三日,大鼠穿得七尺,小鼠穿得

一尺七寸半。并之,以减垣厚五尺,有余三尺七寸半。以盈不足术求之,即得。

以后一日所穿乘日分子,如日分母而一,即各得日分子之中所穿。故各增二日定

穿,即合所问也。〕

卷八

○方程(以御错糅正负)

今有上禾三秉,中禾二秉,下禾一秉,实三十九斗;上禾二秉,中禾三秉,

下禾一秉,实三十四斗;上禾一秉,中禾二秉,下禾三秉,实二十六斗。问上、

中、下禾实一秉各几何?答曰:上禾一秉九斗四分斗之一。中禾一秉四斗四分斗

之一。下禾一秉二斗四分斗之三。

方程

〔程,课程也。群物总杂,各列有数,总言其实。令每行为率。二物者再程,

三物者三程,皆如物数程之。并列为行,故谓之方程。行之左右无所同存,且为

有所据而言耳。此都术也,以空言难晓,故特系之禾以决之。又列中、左行如右

行也。〕

术曰:置上禾三秉,中禾二秉,下禾一秉,实三十九斗于右方。中、左禾列

如右方。以右行上禾遍乘中行,而以直除。

〔为术之意,令少行减多行,反复相减,则头位必先尽。上无一位,则此行

亦阙一物矣。然而举率以相减,不害余数之课也。若消去头位,则下去一物之实。

如是叠令左右行相减,审其正负,则可得而知。先令右行上禾乘中行,为齐同之

意。为齐同者,谓中行直减右行也。从简易虽不言齐同,以齐同之意观之,其义

然矣。〕

又乘其次,亦以直除。

〔复去左行首。〕

然以中行中禾不尽者遍乘左行,而以直除。

〔亦令两行相去行之中禾也。〕

左方下禾不尽者,上为法,下为实。实即下禾之实。

〔上、中禾皆去,故余数是下禾实,非但一秉。欲约众秉之实,当以禾秉数

为法。列此,以下禾之秉数乘两行,以直除,则下禾之位皆决矣。各以其余一位

之秉除其下实。即计数矣用算繁而不省。所以别为法,约也。然犹不如自用其旧。

广异法也。〕

求中禾,以法乘中行下实,而除下禾之实。

〔此谓中两禾实,下禾一秉实数先见,将中秉求中禾,其列实以减下实。而

左方下禾虽去一,以法为母,于率不通。故先以法乘,其通而同之。俱令法为母,

而除下禾实。以下禾先见之实令乘下禾秉数,即得下禾一位之列实。减于下实,

则其数是中禾之实也。〕

余,如中禾秉数而一,即中禾之实。

〔余,中禾一位之实也。故以一位秉数约之,乃得一秉之实也。〕

求上禾,亦以法乘右行下实,而除下禾、中禾之实。

〔此右行三禾共实,合三位之实。故以二位秉数约之,乃得一秉之实。今中

下禾之实其数并见,令乘右行之禾秉以减之。故亦如前各求列实,以减下实也。〕

余,如上禾秉数而一,即上禾之实。实皆如法,各得一斗。

〔三实同用,不满法者,以法命之。母、实皆当约之。〕

今有上禾七秉,损实一斗,益之下禾二秉,而实一十斗;下禾八秉,益实一

斗,与上禾二秉,而实一十斗。问上、下禾实一秉各几何?答曰:上禾一秉实一

斗五十二分斗之一十八。下禾一秉实五十二分斗之四十一。

术曰:如方程。损之曰益,益之曰损。

〔问者之辞虽?今按:实云上禾七秉,下禾二秉,实一十一斗;上禾二秉,

下禾八秉,实九斗也。“损之曰益”,言损一斗,余当一十斗;今欲全其实,当

加所损也。“益之曰损”,言益实以一斗,乃满一十斗;今欲知本实,当减所加,

即得也。〕

损实一斗者,其实过一十斗也;益实一斗者,其实不满一十斗也。

〔重谕损益数者,各以损益之数损益之也。〕

今有上禾二秉,中禾三秉,下禾四秉,实皆不满斗。上取中、中取下、下取

上各一秉而实满斗。问上、中、下禾实一秉各几何?答曰上禾一秉实二十五分斗

之九。中禾一秉实二十五分斗之七。下禾一秉实二十五分斗之四。

术曰:如方程。各置所取。

〔置上禾二秉为右行之上,中禾三秉为中行之中,下禾四秉为左行之下,所

取一秉及实一斗各从其位。诸行相借取之物皆依此例。〕

以正负术入之。

正负术曰:

〔今两算得失相反,要令正负以名之。正算赤,负算黑,否则以邪正为异。

方程自有赤、黑相取,法、实数相推求之术。而其并减之势不得广通,故使赤、

黑相消夺之,于算或减或益。同行异位殊为二品,各有并、减之差见于下焉。著

此二条,特系之禾以成此二条之意。故赤、黑相杂足以定上下之程,减、益虽殊

足以通左右之数,差、实虽分足以应同异之率。然则其正无入以负之,负无入以

正之,其率不妄也。〕

同名相除,

〔此谓以赤除赤,以黑除黑,行求相减者,为去头位也。然则头位同名者,

当用此条,头位异名者,当用下条。〕

异名相益,

〔益行减行,当各以其类矣。其异名者,非其类也。非其类者,犹无对也,

非所得减也。故赤用黑对则除,黑;无对则除,黑;黑用赤对则除,赤;无对则

除,赤;赤黑并于本数。此为相益之,皆所以为消夺。消夺之与减益成一实也。

术本取要,必除行首。至于他位,不嫌多少,故或令相减,或令相并,理无同异

而一也。〕

正无入负之,负无入正之。

〔无入,为无对也。无所得减,则使消夺者居位也。其当以列实或减下实,

而行中正负杂者亦用此条。此条者,同名减实,异名益实,正无入负之,负无入

正之也。〕

其异名相除,同名相益,正无入正之,负无入负之。

〔此条异名相除为例,故亦与上条互取。凡正负所以记其同异,使二品互相

取而已矣。言负者未必负于少,言正者未必正于多。故每一行之中虽复赤黑异算

无伤。然则可得使头位常相与异名。此条之实兼通矣,遂以二条反覆一率。观其

每与上下互相取位,则随算而言耳,犹一术也。又,本设诸行,欲因成数以相去

耳。故其多少无限,令上下相命而已。若以正负相减,如数有旧增法者,每行可

均之,不但数物左右之也。〕

今有上禾五秉,损实一斗一升,当下禾七秉;上禾七秉,损实二斗五升,当

下禾五秉。问上、下禾实一秉各几何?答曰:上禾一秉五升。下禾一秉二升。

术曰:如方程。置上禾五秉正,下禾七秉负,损实一斗一升正。

〔言上禾五秉之实多,减其一斗一升,余,是与下禾七秉相当数也。故互其

算,令相折除,以一斗一升为差。为差者,上禾之余实也。〕

次置上禾七秉正,下禾五秉负,损实二斗五升正。以正负术入之。

〔按:正负之术,本设列行,物程之数不限多少,必令与实上下相次,而以

每行各自为率。然而或减或益,同行异位,殊为二品,各自并、减,之差见于下

也。〕

今有上禾六秉,损实一斗八升,当下禾一十秉;下禾一十五秉,损实五升,

当上禾五秉。问上、下禾实一秉各几何?答曰:上禾一秉实八升。下禾一秉实三

升。

术曰:如方程。置上禾六秉正,下禾一十秉负,损实一斗八升正。次,上禾

五秉负,下禾一十五秉正,损实五升正。以正负术入之。

〔言上禾六秉之实多,减损其一斗八升,余是与下禾十秉相当之数。故亦互

其算,而以一斗八升为差实。差实者,上禾之余实。〕

今有上禾三秉,益实六斗,当下禾一十秉;下禾五秉,益实一斗,当上禾二

秉。问上、下禾实一秉各几何?答曰:上禾一秉实八斗。下禾一秉实三斗。

术曰:如方程。置上禾三秉正,下禾一十秉负,益实六斗负。次置上禾二秉

负,下禾五秉正,益实一斗负。以正负术入之。

〔言上禾三秉之实少,益其六斗,然后于下禾十秉相当也。故亦互其算,而

以六斗为差实。差实者,下禾之余实。〕

今有牛五,羊二,直金十两;牛二,羊五,直金八两。问牛、羊各直金几何?

答曰:牛一直金一两二十一分两之一十三。羊一直金二十一分两之二十。

术曰:如方程。

〔假令为同齐,头位为牛,当相乘。右行定,更置牛十,羊四,直金二十两;

左行:牛十,羊二十五,直金四十两。牛数等同,金多二十两者,羊差二十一使

之然也。以少行减多行,则牛数尽,惟羊与直金之数见,可得而知也。以小推大,

虽四五行不异也。〕

今有卖牛二,羊五,以买一十三豕,有余钱一千;卖牛三,豕三,以买九羊,

钱适足;卖六羊,八豕,以买五牛,钱不足六百。问牛、羊、豕价各几何?答曰

牛价一千二百。羊价五百。豕价三百。

术曰:如方程。置牛二,羊五正,豕一十三负,余钱数正;次,牛三正,羊

九负,豕三正;次五牛负,六羊正,八豕正,不足钱负。以正负术入之。

〔此中行买、卖相折,钱适足,故但互买卖算而已。故下无钱直也。设欲以

此行如方程法,先令二牛遍乘中行,而以右行直除之。是故终于下实虚缺矣。故

注曰正无实负,负无实正,方为类也。方将以别实加适足之数与实物作实。

盈不足章“黄金白银”与此相当。“假令黄金九,白银一十一,称之重适等。

交易其一,金轻十三两。问金、银一枚各重几何?”与此同。〕

今有五雀六燕,集称之衡,雀俱重,燕俱轻。一雀一燕交而处,衡适平。并

雀、燕重一斤。问雀、燕一枚各重几何?答曰:雀重一两一十九分两之一十三。

燕重一两一十九分两之五。

术曰:如方程。交易质之,各重八两。

〔此四雀一燕与一雀五燕衡适平,并重一斤,故各八两。列两行程数。左行

头位其数有一者,令右行遍除。亦可令于左行而取其法、实于左。左行数多,以

右行取其数。左头位减尽,中、下位算当燕与实。右行不动。左上空,中法,下

实,即每枚当重宜可知也。按:此四雀一燕与一雀五燕其重等,是三雀、四燕重

相当。雀率重四,燕率重三也。诸再程之率皆可异术求也,即其数也。〕

今有甲、乙二人持钱不知其数。甲得乙半而钱五十,乙得甲太半而亦钱五十。

问甲、乙持钱各几何?答曰:甲持三十七钱半。乙持二十五钱。

术曰:如方程。损益之。

〔此问者言一甲,半乙而五十;太半甲,一乙亦五十也。各以分母乘其全,

内子。行定:二甲,一乙而钱一百;二甲,三乙而钱一百五十。于是乃如方程。

诸物有分者放此。〕

今有二马,一牛,价过一万,如半马之价;一马,二牛,价不满一万,如半

牛之价。问牛、马价各几何?答曰:马价五千四百五十四钱一十一分钱之六。牛

价一千八百一十八钱一十一分钱之二。

术曰:如方程。损益之。

〔此一马半与一牛价直一万也,二牛半与一马亦直一万也。一马半与一牛直

钱一万,通分内子,右行为三马,二牛,直钱二万。二牛半与一马直钱一万,通

分内子,左行为二马,五牛,直钱二万也。〕

今有武马一匹,中马二匹,下马三匹,皆载四十石至阪,皆不能上。武马借

中马一匹,中马借下马一匹,下马借武马一匹,乃皆上。问武、中、下马一匹各

力引几何?答曰:武马一匹力引二十二石七分石之六。中马一匹力引一十七石七

分石之一。下马一匹力引五石七分石之五。

术曰:如方程。各置所借,以正负术入之。

今有五家共井,甲二绠不足,如乙一绠。乙三绠不足,以丙一绠;丙四绠不

足,以丁一绠;丁五绠不足,以戊一绠;戊六绠不足,以甲一绠。如各得所不足

一绠,皆逮。问井深、绠长各几何?答曰:井深七丈二尺一寸。甲绠长二丈六尺

五寸。乙绠长一丈九尺一寸。丙绠长一丈四尺八寸。丁绠长一丈二尺九寸。戊绠

长七尺六寸。

术曰:如方程。以正负术入之。

〔此率初如方程为之,名各一逮井。其后,法得七百二十一,实七十六,是

为七百二十一绠而七十六逮井,并用逮之数。以法除实者,而戊一绠逮井之数定,

逮七百二十一分之七十六。是故七百二十一为井深,七十六为戊绠之长,举率以

言之。〕

今有白禾二步,青禾三步,黄禾四步,黑禾五步,实各不满斗。白取青、黄,

青取黄、黑,黄取黑、白,黑取白、青,各一步,而实满斗。问白、青、黄、黑

禾实一步各几何?答曰:白禾一步实一百一十一分斗之三十三。青禾一步实一百

一十一分斗之二十八。黄禾一步实一百一十一分斗之一十七。黑禾一步实一百一

十一分斗之一十。

术曰:如方程。各置所取,以正负术入之。

今有甲禾二秉,乙禾三秉,丙禾四秉,重皆过于石。甲二重如乙一,乙三重

如丙一,丙四重如甲一。问甲、乙、丙禾一秉各重几何?答曰:甲禾一秉重二十

三分石之一十七。乙禾一秉重二十三分石之一十一。丙禾一秉重二十三分石之一

十。

术曰:如方程。置重过于石之物为负。

〔此问者言甲禾二秉之重过于一石也。其过者何云?如乙一秉重矣。互其算,

令相折除,而一以石为之差实。差实者,如甲禾余实。故置算相与同也。〕

以正负术入之。

〔此入,头位异名相除者,正无入正之,负无入负之

返回目录 上一页 下一页 回到顶部 0 0

你可能喜欢的