九章算术-第7部分
按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
三品棋皆一而为三,故三而一,得积尺。用棋之数:立方三、堑堵阳马各十二,
凡二十七,棋十三。更差次之,而成方亭者三,验矣。为术又可令方差自乘,以
高乘之,三而一,即四阳马也;上下方相乘,以高乘之,即中央立方及四面堑堵
也。并之,以为方亭积数也。〕
今有圆亭,下周三丈,上周二丈,高一丈。问积几何?答曰:五百二十七尺
九分尺之七。
〔于徽术,当积五百四尺四百七十一分尺之一百一十六也。
淳风等按:依密率,为积五百三尺三十三分尺之二十六。〕
术曰:上下周相乘,又各自乘,并之,以高乘之,三十六而一。
〔此术周三径一之义。合以三除上下周,各为上下径。以相乘,又各自乘,
并,以高乘之,三而一,为方亭之积。假令三约上下周俱不尽,还通之,即各为
上下径。令上下径相乘,又各自乘,并,以高乘之,为三方亭之积分。此合分母
三相乘得九,为法,除之。又三而一,得方亭之积。从方亭求圆亭之积,亦犹方
幂中求圆幂。乃令圆率三乘之,方率四而一,得圆亭之积。前求方亭之积,乃以
三而一;今求圆亭之积,亦合三乘之。二母既同,故相准折,惟以方幂四乘分母
九,得三十六,而连除之。于徽术,当上下周相乘,又各自乘,并,以高乘之,
又二十五乘之,九百四十二而一。此方亭四角圆杀,比于方亭,二百分之一百五
十七。为术之意,先作方亭,三而一。则此据上下径为之者,当又以一百五十七
乘之,六百而一也。今据周为之,若于圆堡昪,又以二十五乘之,三百一十四而
一,则先得三圆亭矣。故以三百一十四为九百四十二而一,并除之。
淳风等按:依密率,以七乘之,二百六十四而一。〕
今有方锥,下方二丈七尺,高二丈九尺。问积几何?答曰:七千四十七尺。
术曰:下方自乘,以高乘之,三而一。
〔按:此术假令方锥下方二尺,高一尺,即四阳马。如术为之,用十二阳马
成三方锥。故三而一,得方锥也。〕
今有圆锥,下周三丈五尺,高五丈一尺。问积几何?答曰:一千七百三十五
尺一十二分尺之五。
〔于徽术,当积一千六百五十八尺三百一十四分尺之十三。
淳风等按:依密率,为积一千六百五十六尺八十八分尺之四十七。〕
术曰:下周自乘,以高乘之,三十六而一。
〔按:此术圆锥下周以为方锥下方。方锥下方令自乘,以高乘之,令三而一,
得大方锥之积。大锥方之积合十二圆矣。今求一圆,复合十二除之,故令三乘十
二,得三十六,而连除。于徽术,当下周自乘,以高乘之,又以二十五乘之,九
百四十二而一。圆锥比于方锥亦二百分之一百五十七。令径自乘者,亦当以一百
五十七乘之,六百而一。其说如圆亭也。
淳风等按:依密率,以七乘之,二百六十四而一。〕
今有堑堵,下广二丈,袤一十八丈六尺,高二丈五尺。问积几何?答曰:四
万六千五百尺。
术曰:广袤相乘,以高乘之,二而一。
〔邪解立方,得两堑堵。虽复橢方,亦为堑堵。故二而一。此则合所规棋。
推其物体,盖为堑上叠也。其形如城,而无上广,与所规棋形异而同实。未闻所
以名之为堑堵之说也。〕
今有阳马,广五尺,袤七尺,高八尺。问积几何?答曰:九十三尺少半尺。
术曰:广袤相乘,以高乘之,三而一。
〔按:此术阳马之形,方锥一隅也。今谓四柱屋隅为阳马。假令广袤各一尺,
高一尺,相乘,得立方积一尺。邪解立方,得两堑堵;邪解堑堵,其一为阳马,
一为鳖臑。阳马居二,鳖臑居一,不易之率也。合两鳖臑成一阳马,合三阳马而
成一立方,故三而一。验之以棋,其形露矣。悉割阳马,凡为六鳖臑。观其割分,
则体势互通,盖易了也。其棋或修短、或广狭、立方不等者,亦割分以为六鳖臑。
其形不悉相似。然见数同,积实均也。鳖臑殊形,阳马异体。然阳马异体,则不
纯合。不纯合,则难为之矣。何则?按:邪解方棋以为堑堵者,必当以半为分;
邪解堑堵以为阳马者,亦必当以半为分,一从一横耳。设以阳马为分内,鳖臑为
分外。棋虽或随修短广狭,犹有此分常率知,殊形异体,亦同也者,以此而已。
其使鳖臑广、袤、高各二尺,用堑堵、鳖臑之棋各二,皆用赤棋。又使阳马之广、
袤、高各二尺,用立方之棋一,堑堵、阳马之棋各二,皆用黑棋。棋之赤、黑,
接为堑堵,广、袤、高各二尺。于是中攽其广、袤,又中分其高。令赤、黑堑堵
各自适当一方,高一尺,方一尺,每二分鳖臑,则一阳马也。其余两端各积本体,
合成一方焉。是为别种而方者率居三,通其体而方者率居一。虽方随棋改,而固
有常然之势也。按:余数具而可知者有一、二分之别,则一、二之为率定矣。其
于理也岂虚矣。若为数而穷之,置余广、袤、高之数,各半之,则四分之三又可
知也。半之弥少,其余弥细,至细曰微,微则无形。由是言之,安取余哉?数而
求穷之者,谓以情推,不用筹算。鳖臑之物,不同器用;阳马之形,或随修短广
狭。然不有鳖臑,无以审阳马之数,不有阳马,无以知锥亭之数,功实之主也。〕
今有鳖臑,下广五尺,无袤;上袤四尺,无广;高七尺。问积几何?答曰:
二十三尺少半尺。
术曰:广袤相乘,以高乘之,六而一。
〔按:此术臑者,臂节也。或曰:半阳马,其形有似鳖肘,故以名云。中破
阳马,得两鳖臑。鳖臑之见数即阳马之半数。数同而实据半,故云六而一,即得。〕
今有羡除,下广六尺,上广一丈,深三尺;末广八尺,无深;袤七尺。问积
几何?答曰:八十四尺。
术曰:并三广,以深乘之,又以袤乘之,六而一。
〔按:此术羡除,实隧道也。其所穿地,上平下邪,似两鳖臑夹一堑堵,即
羡除之形。假令用此棋:上广三尺,深一尺,下广一尺;末广一尺,无深;袤一
尺。下广、末广皆堑堵之广。上广者,两鳖臑与一堑堵相连之广也。以深、袤乘,
得积五尺。鳖臑居二,堑堵居三,其于本棋皆一为六,故六而一。合四阳马以为
方锥。邪画方锥之底,亦令为中方。就中方削而上合,全为中方锥之半。于是阳
马之棋悉中解矣。中锥离而为四鳖臑焉。故外锥之半亦为四鳖臑。虽背正异形,
与常所谓鳖臑参不相似,实则同也。所云夹堑堵者,中锥之鳖臑也。凡堑堵上袤
短者,连阳马也。下袤短者,与鳖臑连也。上、下两袤相等知,亦与鳖臑连也。
并三广,以高、袤乘,六而一,皆其积也。今此羡除之广即堑堵之袤也。按:
此本是三广不等,即与鳖臑连者。别而言之:中央堑堵广六尺,高三尺,袤七尺。
末广之两旁,各一小鳖臑,皆与堑堵等。令小鳖臑居里,大鳖臑居表,则大鳖臑
皆出橢方锥:下广二尺,袤六尺,高七尺。分取其半,则为袤三尺。以高、广乘
之,三而一,即半锥之积也。邪解半锥得此两大鳖臑。求其积,亦当六而一,合
于常率矣。按:阳马之棋两邪,棋底方。当其方也,不问旁角而割之,相半可知
也。推此上连无成不方,故方锥与阳马同实。角而割之者,相半之势。此大小鳖
臑可知更相表里,但体有背正也。〕
今有刍甍,下广三丈,袤四丈;上袤二丈,无广;高一丈。问积几何?答曰:
五千尺。
术曰:倍下袤,上袤从之,以广乘之,又以高乘之,六而一。
〔推明义理者:旧说云:“凡积刍有上下广曰童,甍,谓其屋盖之苫也。”
是故甍之下广、袤与童之上广、袤等。正解方亭两边,合之即刍甍之形也。假令
下广二尺,袤三尺;上袤一尺,无广;高一尺。其用棋也,中央堑堵二,两端阳
马各二。倍下袤,上袤从之,为七尺。以下广乘之,得幂十四尺。阳马之幂各居
二,堑堵之幂各居三。以高乘之,得积十四尺。其于本棋也,皆一而为六。故六
而一,即得。亦可令上下袤差乘广,以高乘之,三而一,即四阳马也;下广乘上
袤而半之,高乘之,即二堑堵;并之,以为甍积也。〕
刍童、曲池、盘池、冥谷皆同术。
术曰:倍上袤,下袤从之;亦倍下袤,上袤从之;各以其广乘之,并,以高
若深乘之,皆六而一。
〔按:此术假令刍童上广一尺,袤二尺;下广三尺,袤四尺;高一尺。其用
棋也,中央立方二,四面堑堵六,四角阳马四。倍下袤为八,上袤从之,为十,
以高、广乘之,得积三十尺。是为得中央立方各三,两端堑堵各四,两旁堑堵各
六,四角阳马亦各六。复倍上袤,下袤从之,为八,以高、广乘之,得积八尺。
是为得中央立方亦各三,两端堑堵各二。并两旁,三品棋皆一而为六。故六而一,
即得。为术又可令上下广袤差相乘,以高乘之,三而一,亦四阳马;上下广袤
互相乘,并,而半之,以高乘之,即四面六堑堵与二立方;并之,为刍童积。又
可令上下广袤互相乘而半之,上下广袤又各自乘,并,以高乘之,三而一,即得
也。〕
其曲池者,并上中、外周而半之,以为上袤;亦并下中、外周而半之,以为
下袤。
〔此池环而不通匝,形如盘蛇,而曲之。亦云周者,谓如委谷依垣之周耳。
引而伸之,周为袤。求袤之意,环田也。〕
今有刍童,下广二丈,袤三丈;上广三丈,袤四丈;高三丈。问积几何?答
曰:二万六千五百尺。
今有曲池,上中周二丈,外周四丈,广一丈;下中周一丈四尺,外周二丈四
尺,广五尺;深一丈。问积几何?答曰:一千八百八十三尺三寸少半寸。
今有盘池,上广六丈,袤八丈;下广四丈,袤六丈,深二丈。问积几何?答
曰:七万六百六十六尺太半尺。
负土往来七十步,其二十步上下棚除,棚除二当平道五;踟蹰之间十加一;
载输之间三十步,定一返一百四十步。土笼积一尺六寸。秋程人功行五十九里半。
问人到积尺及用徒各几何?答曰:人到二百四尺。用徒三百四十六人一百五十三
分人之六十二。
术曰:以一笼积尺乘程行步数,为实。往来上下棚除二当平道五。
〔棚,阁;除,斜道;有上下之难,故使二当五也。〕
置定往来步数,十加一,及载输之间三十步,以为法。除之,所得即一人所
到尺。以所到约积尺,即用徒人数。
〔按:此术棚,阁;除,斜道;有上下之难,故使二当五。置定往来步数,
十加一,及载输之间三十步,是为往来一返凡用一百四十步。于今有术为所有率,
笼积一尺六寸为所求率,程行五十九里半为所有数,而今有之,即所到尺数。以
所到约积尺,即用徒人数者,此一人之积除其众积尺,故得用徒人数。为术又
可令往来一返所用之步约程行为返数,乘笼积为一人所到。以此术与今有术相
反覆,则乘除之或先后,意各有所在而同归耳。〕
今有冥谷,上广二丈,袤七丈;下广八尺,袤四丈;深六丈五尺。问积几何?
答曰:五万二千尺。
载土往来二百步,载输之间一里。程行五十八里;六人共车,车载三十四尺
七寸。问人到积尺及用徒各几何?答曰:人到二百一尺五十分尺之十三。用徒二
百五十八人一万六十三分人之三千七百四十六。
术曰:以一车积尺乘程行步数,为实。置今往来步数,加载输之间一里,以
车六人乘之,为法。除之,所得即一人所到尺。以所到约积尺,即用徒人数。
〔按:此术今有之义。以载输及往来并得五百步,为所有率,车载三十四尺
七寸为所求率,程行五十八里,通之为步,为所有数,而今有之,所得即一车所
到。欲得人到者,当以六人除之,即得。术有分,故亦更令乘法而并除者,亦用
以车尺数以为一人到土率,六人乘五百步为行率也。又亦可五百步为行率,令六
人约车积尺数为一人到土率,以负土术入之。入之者,亦可求返数也。要取其会
通而已。术恐有分,故令乘法而并除。以所到约积尺,即用徒人数者,以一人所
到积尺除其众积,故得用徒人数也。〕
今有委粟平地,下周一十二丈,高二丈。问积及为粟几何?答曰:积八千尺。
〔于徽术,当积七千六百四十三尺一百五十七分尺之四十九。
淳风等按:依密率,为积七千六百三十六尺十一分尺之四。〕
为粟二千九百六十二斛二十七分斛之二十六。
〔于徽术,当粟二千八百三十斛一千四百一十三分斛之一千二百一十。
淳风等按:依密率,为粟二千八百二十八斛九十九分斛之二十八。〕
今有委菽依垣,下周三丈,高七尺。问积及为菽各几何?答曰:积三百五十
尺。
〔依徽术,当积三百三十四尺四百七十一分尺之一百八十六。
淳风等按:依密率,为积三百三十四尺十一分尺之一。〕
为菽一百四十四斛二百四十三分斛之八。
〔依徽术,当菽一百三十七斛一万二千七百一十七分斛之七千七百七十一。
淳风等按:依密率,为菽一百三十七斛八百九十一分斛之四百三十三。〕
今有委米依垣内角,下周八尺,高五尺。问积及为米各几何?答曰:积三十
五尺九分尺之五。
〔于徽术,当积三十三尺四百七十一分尺之四百五十七。
淳风等按:依密率,当积三十三尺三十三分尺之三十一。〕
为米二十一斛七百二十九分斛之六百九十一。
〔于徽术,当米二十斛三万八千一百五十一分斛之三万六千九百八十。
淳风等按:依密率,为米二十斛二千六百七十三